Exemplo n.º 1
0
def save_training_images_paths(path_pre_processed_positive,
                               path_pre_processed_negative):
    '''
    Save detector_training image paths in txt files.
    '''
    positive_training_images = Files(path_pre_processed_positive)
    negative_training_images = Files(path_pre_processed_negative)

    positive_path = "positive.txt"
    logger = Logger()
    logger.log(Logger.INFO, "Saving positive paths in: " + positive_path)

    positive_file = open(positive_path, "w")
    for file_path in positive_training_images.paths:
        base_name = ntpath.basename(file_path)
        save_path = path_pre_processed_positive + base_name
        positive_file.write(save_path + "\n")
    positive_file.close()

    negative_path = "negative.txt"
    logger.log(Logger.INFO, "Saving negative paths in: " + negative_path)

    negative_file = open(negative_path, "w")
    for file_path in negative_training_images.paths:
        base_name = ntpath.basename(file_path)
        save_path = path_pre_processed_negative + base_name
        negative_file.write(save_path + "\n")
    negative_file.close()
Exemplo n.º 2
0
def training(argv):
    '''
    Train license plate detector.
    '''
    # Parses args.
    arg_parser = ArgumentParser(description='Load and plot image.')
    arg_parser.add_argument('-c',
                            '--config',
                            dest='config_file',
                            default='config.ini',
                            help='Configuration file')
    args = vars(arg_parser.parse_args())

    # Parses configuration file.
    config_parser = SafeConfigParser()
    config_parser.read(args['config_file'])
    path_pre_processed_negative = config_parser.get(
        'data', 'path_pre_processed_negative')
    total_negative_files = len(Files(path_pre_processed_negative).paths)
    negative_file = "negative.txt"
    positive_file = "positive.vec"
    reserved_memory = str(config_parser.get('training', 'reserved_memory'))
    total_positive_files = config_parser.get('training',
                                             'total_positive_files')
    training_width = config_parser.get('training', 'training_width')
    training_height = config_parser.get('training', 'training_height')
    detector_command = "opencv_traincascade -data classifier -vec " + positive_file + " -bg " + negative_file + " -numStages 20 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos " + str(
        total_positive_files
    ) + " -numNeg " + str(total_negative_files) + " -w " + str(
        training_width
    ) + " -h " + str(
        training_height
    ) + " -mode ALL -precalcValBufSize " + reserved_memory + " -precalcIdxBufSize " + reserved_memory

    # Create script to train classifier.
    logger = Logger()
    logger.log(Logger.INFO, "Creating script training.sh")
    training_path = "training.sh"
    training_file = open(training_path, "w")
    training_file.write("#!/bin/bash\n")
    training_file.write(detector_command)
    training_file.close()

    # Training classifier.
    logger.log(Logger.INFO, "Start trainning.")
    call(["sh", training_path])
Exemplo n.º 3
0
 # Parses configuration file.
 config_parser = SafeConfigParser()
 config_parser.read(args['config_file'])    
 path_original_positive = config_parser.get('data', 'path_original_positive')
 character_original_width = int(config_parser.get('training', 'character_original_width'))
 character_original_height = int(config_parser.get('training', 'character_original_height'))
 path_letter_images = config_parser.get('data', 'path_letter_images')
 path_letter_labels = config_parser.get('data', 'path_letter_labels')
 path_number_images = config_parser.get('data', 'path_number_images')
 path_number_labels = config_parser.get('data', 'path_number_labels')
 image_width = 400
 image_height = 200
 
 # Load and pre process images.
 logger = Logger()
 logger.log(Logger.INFO, "Loading images.")
 positive_images = Files(path_original_positive)
 character_validator = CharacterValidator()
 number_labels = []
 number_images = []
 letter_labels = []
 letter_images = []
 
 for index in range(len(positive_images.paths)):
     file_path = positive_images.paths[index]
     
     # Load image and configuration data.
     image_original = Image(file_path)
     config_data = ConfigData(Quadrilaterals(), file_path)
     config_data.read_data()
     
Exemplo n.º 4
0
def crop_image(image, quadrilateral, width_dest, height_dest):
    '''
    Crop image using parameters of quadrilateral.
    '''
    # Find crop parameters.
    logger = Logger()
    logger.log(Logger.INFO, "Finding crop parameters.")
    origin = Point(image.width, image.height)
    end = Point(0, 0)

    for point in quadrilateral.points:
        if point.x > end.x:
            end.x = point.x

        if point.y > end.y:
            end.y = point.y

        if point.x < origin.x:
            origin.x = point.x

        if point.y < origin.y:
            origin.y = point.y

    # Adjust dimensions to height be 20% of width.
    scale = height_dest * 1.0 / width_dest
    height = end.y - origin.y
    width = end.x - origin.x

    # Check if we will change height or width.
    if width * scale < height:
        # We need to increase width.
        increment = height * 2.5 - width
        end.x += increment / 2

        if end.x >= image.width:
            increment -= image.width - 1 - end.x
            end.x = image.width - 1
        else:
            increment /= 2

        origin.x -= increment

        if origin.x < 0:
            increment = -origin.x
            origin.x = 0
            end.x += increment

            if end.x >= image.width:
                end.x = image.width - 1

        logger.log(Logger.INFO,
                   "Increasing width in " + str(end.x - origin.x - width))
    else:
        # We need to increase height.
        increment = width * scale - height
        end.y += increment / 2

        if end.y >= image.height:
            increment -= image.height - 1 - end.y
            end.y = image.height - 1
        else:
            increment /= 2

        origin.y -= increment

        if origin.y < 0:
            increment = -origin.y
            origin.y = 0
            end.y += increment

            if end.y >= image.height:
                end.y = image.height - 1

        logger.log(Logger.INFO,
                   "Increasing height in " + str(end.y - origin.y - height))

    # Crop image using points from configuration data.
    cropped = image.crop(Point(origin.x, origin.y), Point(end.x, end.y))

    # Resize image.
    resized = cropped.resize(width_dest, height_dest)

    return resized
Exemplo n.º 5
0
def pre_processing(argv):
    '''
    Pre process image files to train detector.
    '''
    # Parses args.
    arg_parser = ArgumentParser(description='Load and plot image.')
    arg_parser.add_argument('-c',
                            '--config',
                            dest='config_file',
                            default='config.ini',
                            help='Configuration file')
    args = vars(arg_parser.parse_args())

    # Parses configuration file.
    config_parser = SafeConfigParser()
    config_parser.read(args['config_file'])
    path_original_positive = config_parser.get('data',
                                               'path_original_positive')
    path_original_negative = config_parser.get('data',
                                               'path_original_negative')
    path_pre_processed_positive = config_parser.get(
        'data', 'path_pre_processed_positive')
    path_pre_processed_negative = config_parser.get(
        'data', 'path_pre_processed_negative')
    path_training_vec = config_parser.get('data', 'path_training_vec')
    total_positive_files = config_parser.get('training',
                                             'total_positive_files')
    image_width = config_parser.get('training', 'image_width')
    image_height = config_parser.get('training', 'image_height')
    training_width = config_parser.get('training', 'training_width')
    training_height = config_parser.get('training', 'training_height')

    # Removing old files.
    logger = Logger()
    logger.log(Logger.INFO, "Removing old files.")
    files = Files(path_pre_processed_positive, True)
    files.remove()
    files = Files(path_pre_processed_negative, True)
    files.remove()
    files = Files(path_training_vec, True)
    files.remove()

    # Pre process positive images.
    logger.log(Logger.INFO, "Pre-processing positive images.")
    positive_images = Files(path_original_positive)

    for file_path in positive_images.paths:
        # Load image and configuration data.
        image = Image(file_path)
        config_data = ConfigData(Quadrilaterals(), file_path)
        config_data.read_data()

        # Convert and equalize image.
        image.convert_to_gray()
        image.equalize()

        # Get file name and extension.
        base_name = os.path.splitext(ntpath.basename(file_path))
        file_name = base_name[0]
        extension = base_name[1]

        index_quadrilateral = 0
        for quadrilateral in config_data.quadrilaterals.data:
            # Crop image using configuration data.
            license_plate = crop_image(image, quadrilateral, int(image_width),
                                       int(image_height))

            # Save image.
            save_image_path = os.path.abspath(path_pre_processed_positive +
                                              file_name + "_" +
                                              str(index_quadrilateral) +
                                              extension)
            license_plate.save(save_image_path)

            index_quadrilateral += 1

    # Pre process negative images.
    logger.log(Logger.INFO, "Pre-processing negative images.")
    negative_images = Files(path_original_negative)

    for file_path in negative_images.paths:
        # Load image.
        image = Image(file_path)

        # Convert and equalize image.
        image.convert_to_gray()
        image.equalize()

        # Get base name.
        base_name = ntpath.basename(file_path)

        # Save image.
        save_image_path = os.path.abspath(path_pre_processed_negative +
                                          base_name)
        image.save(save_image_path)

    # Save detector_training image paths in txt files.
    save_training_images_paths(path_pre_processed_positive,
                               path_pre_processed_negative)

    # Generating samples.
    logger.log(Logger.INFO, "Generating samples.")
    call([
        "perl", 'lib/generate_samples.pl', 'positive.txt', 'negative.txt',
        path_training_vec,
        str(int(total_positive_files) + 500),
        'opencv_createsamples -bgcolor 0 -bgthresh 0 -maxxangle 1.1\ -maxyangle 1.1 maxzangle 0.5 -maxidev 40 -w '
        + str(training_width) + ' -h ' + str(training_height)
    ])

    # Merging data for detector_training.
    path_training_vec_file = "positive.vec"
    logger.log(
        Logger.INFO,
        "Merging data for detector_training in: " + path_training_vec_file)
    merge_vec_files(path_training_vec, path_training_vec_file)
  character_original_height = int(config_parser.get('training', 'character_original_height'))
  path_letter_images = config_parser.get('data', 'path_letter_images')
  path_letter_labels = config_parser.get('data', 'path_letter_labels')
  path_letter_classifier = config_parser.get('data', 'path_letter_classifier')
  path_number_images = config_parser.get('data', 'path_number_images')
  path_number_labels = config_parser.get('data', 'path_number_labels')
  path_number_classifier = config_parser.get('data', 'path_number_classifier')
  path_number_knn_labels_classifier = config_parser.get('data', 'path_number_knn_labels_classifier')
  path_number_knn_images_classifier = config_parser.get('data', 'path_number_knn_images_classifier')
  path_letter_knn_labels_classifier = config_parser.get('data', 'path_letter_knn_labels_classifier')
  path_letter_knn_images_classifier = config_parser.get('data', 'path_letter_knn_images_classifier')
  character_classifier_type = config_parser.get('data', 'character_classifier_type')
  
  # Load images and labels.
  logger = Logger()
  logger.log(Logger.INFO, "Loading images to train classifiers.")
 
  number_images = np.loadtxt(path_number_images, np.uint8)
  number_labels = np.loadtxt(path_number_labels, np.float32)
  number_labels = number_labels.reshape((number_labels.size, 1))                
  converted_images = []
  labels = []
  
  for index in range(len(number_images)):
      image = number_images[index]
      reshaped = Image(image=image.reshape((character_original_height, character_original_width)))
      reshaped.binarize(adaptative=True)
      mean_value = np.mean(reshaped.data)
      
      if mean_value < 220:
          if isdigit(chr(int(number_labels[index]))):