Exemplo n.º 1
0
def main(_):
    mode = tf.flags.FLAGS.mode
    #print("is gpu avaliable:",tf.test.is_gpu_available())
    if mode == 'train':
        model.train()
    elif mode == 'test':
        model.test()
    elif mode == 'predict':
        model.predict()
    else:
        raise ValueError('--mode {} was not found.'.format(mode))
Exemplo n.º 2
0
def trim(model, xtrain, ytrain, name, threshold, path_to_data, win_len):
    """
    removes from xtrain, ytrain elements on which the model has F1 greater than threshold
    :param path_to_data: path to the folder where the trimmed dataset will be saved
    :return: trimmed dataset
    """
    pred_train = np.array(model.predict(xtrain))
    xtrain_new = xtrain.copy()
    ytrain_new = ytrain.copy()
    counter = 0
    for i in range(len(xtrain)):
        pred = pred_train[i, win_len // 2:5000 - win_len // 2, :]
        y = ytrain[i, win_len // 2:5000 - win_len // 2, :]
        stat = statistics(np.expand_dims(y, axis=0),
                          np.expand_dims(pred, axis=0))
        F = F_score(stat)
        if F >= threshold:
            xtrain_new = np.delete(xtrain_new, i - counter, axis=0)
            ytrain_new = np.delete(ytrain_new, i - counter, axis=0)
            counter += 1

    if not os.path.exists(path_to_data):
        os.makedirs(path_to_data)
    outfile = open(path_to_data + "\\trim_" + name + ".pkl", 'wb')
    pkl.dump({"x": xtrain_new, "y": ytrain_new}, outfile)
    outfile.close()
    return xtrain_new, ytrain_new
Exemplo n.º 3
0
async def predict(payload: FakeNewsPayload):
    vector = fake_news_preprocess(payload)
    prediction = model.predict(vector)

    real_probability = float(prediction[0][0])
    fake_probability = 1 - real_probability

    response = {'fake_probability': fake_probability}

    return response
Exemplo n.º 4
0
def predict_cost(model, dicti):
    di = {
        'AGE': 0,
        'LAT': 0,
        'LON': 0,
        'ethnicity_hispanic': 0.0,
        'ethnicity_nonhispanic': 0.0,
        'gender_F': 0.0,
        'gender_M': 0.0,
        'marital_M': 0.0,
        'marital_S': 0.0,
        'race_asian': 0.0,
        'race_black': 0.0,
        'race_native': 0.0,
        'race_white': 0.0,
        'reasoncode_10509002.0': 0.0,
        'reasoncode_185086009.0': 0.0,
        'reasoncode_192127007.0': 0.0,
        'reasoncode_195662009.0': 0.0,
        'reasoncode_201834006.0': 0.0,
        'reasoncode_230265002.0': 0.0,
        'reasoncode_233678006.0': 0.0,
        'reasoncode_239872002.0': 0.0,
        'reasoncode_239873007.0': 0.0,
        'reasoncode_24079001.0': 0.0,
        'reasoncode_254837009.0': 0.0,
        'reasoncode_26929004.0': 0.0,
        'reasoncode_301011002.0': 0.0,
        'reasoncode_363406005.0': 0.0,
        'reasoncode_36971009.0': 0.0,
        'reasoncode_38822007.0': 0.0,
        'reasoncode_40275004.0': 0.0,
        'reasoncode_424132000.0': 0.0,
        'reasoncode_43878008.0': 0.0,
        'reasoncode_44054006.0': 0.0,
        'reasoncode_444814009.0': 0.0,
        'reasoncode_55822004.0': 0.0,
        'reasoncode_59621000.0': 0.0,
        'reasoncode_75498004.0': 0.0,
        'reasoncode_87433001.0': 0.0,
        'reasoncode_88805009.0': 0.0,
        'reasoncode_90560007.0': 0.0
    }
    # df=pd.DataFrame(di)
    di['AGE'] = (dicti['AGE'])
    di['LAT'] = (dicti['LAT'])
    di['LON'] = (dicti['LON'])
    di['ethnicity_' + dicti['ethnicity']] = 1.0
    di['gender_' + dicti['gender']] = 1.0
    di['marital_' + dicti['marital']] = 1.0
    di['race_' + dicti['race']] = 1.0
    di['reasoncode_' + dicti['reasoncode'] + '.0'] = 1.0
    return model.predict(pd.DataFrame(di, index=[0]))[0]
Exemplo n.º 5
0
def predict():
    # get data
    data = request.get_json(force=True)

    # convert data into dataframe
    data.update((x, [y]) for x, y in data.items())
    data_df = pd.DataFrame.from_dict(data)

    # predictions
    result = model.predict(data_df)

    # send back to browser
    output = {'results': float(result)}

    # return data
    return jsonify(results=output)
Exemplo n.º 6
0
def trim(model, xtrain, ytrain, data_name, threshold, path_to_data, win_len):

    pred_train = np.array(model.predict(xtrain))
    xtrain_new = xtrain.copy()
    ytrain_new = ytrain.copy()
    counter = 0
    for i in range(len(xtrain)):
        pred = pred_train[i, win_len // 2:5000 - win_len // 2, :]
        y = ytrain[i, win_len // 2:5000 - win_len // 2, :]
        stat = statistics(np.expand_dims(y, axis=0),
                          np.expand_dims(pred, axis=0))
        F = F_score(stat)
        if F >= threshold:
            xtrain_new = np.delete(xtrain_new, i - counter, axis=0)
            ytrain_new = np.delete(ytrain_new, i - counter, axis=0)
            counter += 1

    outfile = open(path_to_data + "\\trim_" + data_name + ".pkl", 'wb')
    pkl.dump({"x": xtrain_new, "y": ytrain_new}, outfile)
    outfile.close()
    return xtrain_new, ytrain_new
Exemplo n.º 7
0
def simulate(test_np_x, test_np_y):
    """
    模拟购买彩票,对测试数据进行回测
    :param test_np_x: 测试数据输入
    :param test_np_y: 测试数据输出
    :return: 本次模拟的净收益
    """
    # 获得的奖金总额
    money_in = 0
    # 买彩票花出去的钱总额
    money_out = 0
    # 预测
    predicts = model.predict(test_np_x, batch_size=settings.BATCH_SIZE)
    # 共有多少组数据
    samples_num = len(test_np_x['x1'])
    # 对于每一组数据
    for j in range(samples_num):
        # 这一期的真实开奖结果
        outputs = []
        for k in range(settings.FRONT_SIZE + settings.BACK_SIZE):
            outputs.append(np.argmax(test_np_y['y{}'.format(k + 1)][j]))
        # 每一期彩票买五注
        money_out += 10
        for k in range(5):
            # 存放每个球的概率分布的list
            probabilities = []
            # 对于每一种球,将其概率分布加入到列表中去
            for i in range(settings.FRONT_SIZE + settings.BACK_SIZE):
                probabilities.append(predicts[i][j])
            # 根据概率分布随机选择一个序列
            balls = utils.select_seqs(probabilities)
            # 计算奖金
            award = utils.lotto_calculate(outputs, balls)
            money_in += award
            if award:
                print('{} 中奖了,{}元! {}/{}'.format(j, award, money_in, money_out))
    print('买彩票花费金钱共{}元,中奖金额共{}元,赚取{}元'.format(money_out, money_in, money_in - money_out))
    return money_in - money_out
Exemplo n.º 8
0
def predict_test(file_path, model, X_test):
    model.load_weights(file_path)
    prediction = model.predict(X_test, verbose=1, batch_size=32)

    return prediction
Exemplo n.º 9
0
# @Author  : AaronJny
# @Date    : 2019/11/26
# @Desc    : 指定一个训练好的模型参数,让模型随机选出下期彩票号码
from dataset import LottoDataSet
from models import model
import settings
import utils

# 加载模型参数
model.load_weights(settings.PREDICT_MODEL_PATH)
# 构建数据集
lotto_dataset = LottoDataSet()
# 提取倒数第MAX_STEPS期到最近一期的数据,作为预测的输入
x = lotto_dataset.predict_data
# 开始预测
predicts = model.predict(x, batch_size=1)
# 存放选号结果的列表
result = []
# 存放每个球的概率分布的list
probabilities = [predict[0] for predict in predicts]
# print(probabilities)
# 总共要选出settings.PREDICT_NUM注彩票
for i in range(settings.PREDICT_NUM):
    # 根据概率分布随机选择一个序列
    balls = utils.select_seqs(probabilities)
    # 加入到选号列表中,注意,我们需要把全部的数字+1,恢复原始的编号
    result.append([ball + 1 for ball in balls])
# 输出要买的彩票序列
print('本次预测结果如下:')
for index, balls in enumerate(result, start=1):
    print('第{}注 {}'.format(index, ' '.join(map(str, balls))))
Exemplo n.º 10
0
# @Desc    : 自己输入句子测试模型是否有效
from dataset import tokenizer
from models import model
import settings

# 加载训练好的参数
model.load_weights(settings.BEST_WEIGHTS_PATH)

print('启动验证程序!')
while True:
    try:
        sentence = input('请输入一句话,模型将判断其情绪倾向:')
        token_ids, segment_ids = tokenizer.encode(sentence)
        output = model.predict([[
            token_ids,
        ], [
            segment_ids,
        ]])[0][0]
        if output > 0.5:
            print('正面情绪!')
        else:
            print('负面情绪!')
    except KeyboardInterrupt:
        print('结束程序!')
        break
"""
请输入一句话,模型将判断其情绪倾向:虽然没有买到想要的东西,但我并不沮丧           
正面情绪!
请输入一句话,模型将判断其情绪倾向:没有买到想要的东西, 有点沮丧   
负面情绪!
请输入一句话,模型将判断其情绪倾向:书挺好的,就是贵了点
def predict_from_real_images(model, image_dims, images, image_labels):
    from models.model import predict

    model = model.resize(image_dims)
    return predict(model, images, image_labels=image_labels)
Exemplo n.º 12
0
def predict_careplan(model, dicti):
    di = {
        'AGE': 0,
        'LAT': 0,
        'LON': 0,
        'ethnicity_hispanic': 0.0,
        'ethnicity_nonhispanic': 0.0,
        'gender_F': 0.0,
        'gender_M': 0.0,
        'marital_M': 0.0,
        'marital_S': 0.0,
        'race_asian': 0.0,
        'race_black': 0.0,
        'race_native': 0.0,
        'race_other': 0.0,
        'race_white': 0.0,
        'reasoncode_10509002.0': 0.0,
        'reasoncode_109838007.0': 0.0,
        'reasoncode_110030002.0': 0.0,
        'reasoncode_126906006.0': 0.0,
        'reasoncode_15724005.0': 0.0,
        'reasoncode_15777000.0': 0.0,
        'reasoncode_16114001.0': 0.0,
        'reasoncode_185086009.0': 0.0,
        'reasoncode_192127007.0': 0.0,
        'reasoncode_201834006.0': 0.0,
        'reasoncode_230265002.0': 0.0,
        'reasoncode_233678006.0': 0.0,
        'reasoncode_239720000.0': 0.0,
        'reasoncode_239872002.0': 0.0,
        'reasoncode_239873007.0': 0.0,
        'reasoncode_24079001.0': 0.0,
        'reasoncode_262574004.0': 0.0,
        'reasoncode_263102004.0': 0.0,
        'reasoncode_26929004.0': 0.0,
        'reasoncode_283371005.0': 0.0,
        'reasoncode_283385000.0': 0.0,
        'reasoncode_284549007.0': 0.0,
        'reasoncode_284551006.0': 0.0,
        'reasoncode_301011002.0': 0.0,
        'reasoncode_307731004.0': 0.0,
        'reasoncode_30832001.0': 0.0,
        'reasoncode_33737001.0': 0.0,
        'reasoncode_359817006.0': 0.0,
        'reasoncode_363406005.0': 0.0,
        'reasoncode_36923009.0': 0.0,
        'reasoncode_370143000.0': 0.0,
        'reasoncode_370247008.0': 0.0,
        'reasoncode_38822007.0': 0.0,
        'reasoncode_39848009.0': 0.0,
        'reasoncode_40275004.0': 0.0,
        'reasoncode_403190006.0': 0.0,
        'reasoncode_403191005.0': 0.0,
        'reasoncode_424132000.0': 0.0,
        'reasoncode_44054006.0': 0.0,
        'reasoncode_444448004.0': 0.0,
        'reasoncode_444470001.0': 0.0,
        'reasoncode_44465007.0': 0.0,
        'reasoncode_449868002.0': 0.0,
        'reasoncode_45816000.0': 0.0,
        'reasoncode_47505003.0': 0.0,
        'reasoncode_55680006.0': 0.0,
        'reasoncode_55822004.0': 0.0,
        'reasoncode_58150001.0': 0.0,
        'reasoncode_59621000.0': 0.0,
        'reasoncode_62106007.0': 0.0,
        'reasoncode_62564004.0': 0.0,
        'reasoncode_65966004.0': 0.0,
        'reasoncode_67811000119102.0': 0.0,
        'reasoncode_69896004.0': 0.0,
        'reasoncode_70704007.0': 0.0,
        'reasoncode_72892002.0': 0.0,
        'reasoncode_87433001.0': 0.0,
        'reasoncode_88805009.0': 0.0,
        'reasoncode_90560007.0': 0.0,
        'reasoncode_93761005.0': 0.0,
        'reasoncode_94260004.0': 0.0,
        'reasoncode_95417003.0': 0.0
    }
    di['AGE'] = float(dicti['AGE'])
    di['LAT'] = float(dicti['LAT'])
    di['LON'] = float(dicti['LON'])
    di['ethnicity_' + dicti['ethnicity']] = 1.0
    di['gender_' + dicti['gender']] = 1.0
    di['marital_' + dicti['marital']] = 1.0
    di['race_' + dicti['race']] = 1.0
    di['reasoncode_' + dicti['reasoncode'] + '.0'] = 1.0
    return model.predict(pd.DataFrame(di, index=[0]))[0]