Exemplo n.º 1
0
def infer():

    data_path = DatasetPath('val')
    test_list = data_path.get_file_list()

    cocoGt = COCO(test_list)
    num_id_to_cat_id_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
    category_ids = cocoGt.getCatIds()
    label_list = {
        item['id']: item['name']
        for item in cocoGt.loadCats(category_ids)
    }
    label_list[0] = ['background']
    image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
    class_nums = cfg.class_num

    model = model_builder.RCNN(
        add_conv_body_func=resnet.add_ResNet50_conv4_body,
        add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
        use_pyreader=False,
        is_train=False)
    model.build_model(image_shape)
    pred_boxes = model.eval_bbox_out()
    if cfg.MASK_ON:
        masks = model.eval_mask_out()
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    # yapf: disable
    if cfg.pretrained_model:
        def if_exist(var):
            return os.path.exists(os.path.join(cfg.pretrained_model, var.name))
        fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)
    # yapf: enable
    infer_reader = reader.infer()
    feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    dts_res = []
    segms_res = []
    if cfg.MASK_ON:
        fetch_list = [pred_boxes, masks]
    else:
        fetch_list = [pred_boxes]
    data = next(infer_reader())
    im_info = [data[0][1]]
    result = exe.run(fetch_list=[v.name for v in fetch_list],
                     feed=feeder.feed(data),
                     return_numpy=False)
    pred_boxes_v = result[0]
    if cfg.MASK_ON:
        masks_v = result[1]
    new_lod = pred_boxes_v.lod()
    nmsed_out = pred_boxes_v
    path = os.path.join(cfg.image_path, cfg.image_name)
    image = None
    if cfg.MASK_ON:
        segms_out = segm_results(nmsed_out, masks_v, im_info)
        image = draw_mask_on_image(path, segms_out, cfg.draw_threshold)

    draw_bounding_box_on_image(path, nmsed_out, cfg.draw_threshold, label_list,
                               num_id_to_cat_id_map, image)
Exemplo n.º 2
0
def train():
    learning_rate = cfg.learning_rate
    image_shape = [3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]

    devices_num = get_device_num()
    total_batch_size = devices_num * cfg.TRAIN.im_per_batch

    use_random = True
    model = model_builder.RCNN(
        add_conv_body_func=resnet.
        add_ResNet50_conv4_body,  # res4: [-1, 1024, 84, 84]
        add_roi_box_head_func=resnet.
        add_ResNet_roi_conv5_head,  # res5: [-1, 2048, 7, 7]
        use_pyreader=cfg.use_pyreader,
        use_random=use_random)
    model.build_model(image_shape)
    losses, keys = model.loss()
    loss = losses[0]
    fetch_list = losses

    boundaries = cfg.lr_steps
    gamma = cfg.lr_gamma
    step_num = len(cfg.lr_steps)
    values = [learning_rate * (gamma**i) for i in range(step_num + 1)]
    lr = exponential_with_warmup_decay(learning_rate=learning_rate,
                                       boundaries=boundaries,
                                       values=values,
                                       warmup_iter=cfg.warm_up_iter,
                                       warmup_factor=cfg.warm_up_factor)

    optimizer = fluid.optimizer.Momentum(
        learning_rate=lr,
        regularization=fluid.regularizer.L2Decay(cfg.weight_decay),
        momentum=cfg.momentum)
    optimizer.minimize(loss)

    fetch_list = fetch_list + [lr]
    for var in fetch_list:
        var.persistable = True

    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if cfg.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(cfg.pretrained_model, var.name))

        fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)

    if cfg.parallel:
        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = True
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_iteration_per_drop_scope = 10

        if num_trainers > 1 and cfg.use_gpu:
            dist_utils.prepare_for_multi_process(exe, build_strategy,
                                                 fluid.default_main_program())
            # the process is fast when num_threads is 1 for multi-process training
            exec_strategy.num_threads = 1

        train_exe = fluid.ParallelExecutor(use_cuda=bool(cfg.use_gpu),
                                           loss_name=loss.name,
                                           build_strategy=build_strategy,
                                           exec_strategy=exec_strategy)
    else:
        train_exe = exe

    shuffle = True
    # NOTE: do not shuffle dataset when using multi-process training
    shuffle_seed = None
    if num_trainers > 1:
        shuffle_seed = 1

    if cfg.use_pyreader:
        train_reader = reader.train(batch_size=cfg.TRAIN.im_per_batch,
                                    total_batch_size=total_batch_size,
                                    padding_total=cfg.TRAIN.padding_minibatch,
                                    shuffle=shuffle,
                                    shuffle_seed=shuffle_seed)
        if num_trainers > 1:
            assert shuffle_seed is not None, "If num_trainers > 1, the shuffle_seed must be set, because the order of batch data generated by reader must be the same in the respective processes"
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)
        py_reader = model.py_reader
        py_reader.decorate_paddle_reader(train_reader)
    else:
        if num_trainers > 1:
            shuffle = False
        train_reader = reader.train(batch_size=total_batch_size,
                                    shuffle=shuffle)
        feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    def save_model(postfix):
        model_path = os.path.join(cfg.model_save_dir, postfix)
        if os.path.isdir(model_path):
            shutil.rmtree(model_path)
        fluid.io.save_persistables(exe, model_path)

    def train_loop_pyreader():
        py_reader.start()
        train_stats = TrainingStats(cfg.log_window, keys)
        try:
            start_time = time.time()
            for iter_id in range(cfg.max_iter):
                prev_start_time = start_time
                start_time = time.time()
                outs = train_exe.run(fetch_list=[v.name for v in fetch_list])
                stats = {
                    k: np.array(v).mean()
                    for k, v in zip(keys, outs[:-1])
                }
                train_stats.update(stats)
                logs = train_stats.log()
                strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                    now_time(), iter_id, np.mean(outs[-1]), logs,
                    start_time - prev_start_time)
                print(strs)
                sys.stdout.flush()
                if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
                    save_model("model_iter{}".format(iter_id))
            end_time = time.time()
            total_time = end_time - first_start_time
            last_loss = np.array(outs[0]).mean()
        except (StopIteration, fluid.core.EOFException):
            py_reader.reset()

    def train_loop():
        train_stats = TrainingStats(cfg.log_window, keys)
        start_time = time.time()
        for iter_id, data in enumerate(train_reader()):
            prev_start_time = start_time
            start_time = time.time()
            outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
                                 feed=feeder.feed(data))
            stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
            train_stats.update(stats)
            logs = train_stats.log()
            stats = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                now_time(), iter_id, np.mean(outs[-1]), logs,
                start_time - prev_start_time)
            print(stats)
            sys.stdout.flush()
            if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
                save_model("model_iter{}".format(iter_id))
            if (iter_id + 1) == cfg.max_iter:
                break
        end_time = time.time()
        total_time = end_time - start_time
        last_loss = np.array(outs[0]).mean()

    if cfg.use_pyreader:
        train_loop_pyreader()
    else:
        train_loop()
    save_model('model_final')
Exemplo n.º 3
0
def infer():

    try:
        from pycocotools.coco import COCO
        from pycocotools.cocoeval import COCOeval, Params

        data_path = DatasetPath('val')
        test_list = data_path.get_file_list()
        coco_api = COCO(test_list)
        cid = coco_api.getCatIds()
        cat_id_to_num_id_map = {
            v: i + 1
            for i, v in enumerate(coco_api.getCatIds())
        }
        category_ids = coco_api.getCatIds()
        labels_map = {
            cat_id_to_num_id_map[item['id']]: item['name']
            for item in coco_api.loadCats(category_ids)
        }
        labels_map[0] = 'background'
    except:
        print("The COCO dataset or COCO API is not exist, use the default "
              "mapping of class index and real category name on COCO17.")
        assert cfg.dataset == 'coco2017'
        labels_map = coco17_labels()

    image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
    class_nums = cfg.class_num

    model = model_builder.RCNN(
        add_conv_body_func=resnet.add_ResNet50_conv4_body,
        add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
        use_pyreader=False,
        mode='infer')
    model.build_model(image_shape)
    pred_boxes = model.eval_bbox_out()
    if cfg.MASK_ON:
        masks = model.eval_mask_out()
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    # yapf: disable
    if not os.path.exists(cfg.pretrained_model):
        raise ValueError("Model path [%s] does not exist." % (cfg.pretrained_model))

    def if_exist(var):
        return os.path.exists(os.path.join(cfg.pretrained_model, var.name))
    fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)
    # yapf: enable
    infer_reader = reader.infer(cfg.image_path)
    feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    dts_res = []
    segms_res = []
    if cfg.MASK_ON:
        fetch_list = [pred_boxes, masks]
    else:
        fetch_list = [pred_boxes]
    data = next(infer_reader())
    im_info = [data[0][1]]
    result = exe.run(fetch_list=[v.name for v in fetch_list],
                     feed=feeder.feed(data),
                     return_numpy=False)
    pred_boxes_v = result[0]
    if cfg.MASK_ON:
        masks_v = result[1]
    new_lod = pred_boxes_v.lod()
    nmsed_out = pred_boxes_v
    image = None
    if cfg.MASK_ON:
        segms_out = segm_results(nmsed_out, masks_v, im_info)
        image = draw_mask_on_image(cfg.image_path, segms_out,
                                   cfg.draw_threshold)

    draw_bounding_box_on_image(cfg.image_path, nmsed_out, cfg.draw_threshold,
                               labels_map, image)
Exemplo n.º 4
0
def train():
    learning_rate = cfg.learning_rate
    image_shape = [3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]

    if cfg.enable_ce:
        fluid.default_startup_program().random_seed = 1000
        fluid.default_main_program().random_seed = 1000
        import random
        random.seed(0)
        np.random.seed(0)

    devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
    devices_num = len(devices.split(","))
    total_batch_size = devices_num * cfg.TRAIN.im_per_batch

    use_random = True
    if cfg.enable_ce:
        use_random = False
    model = model_builder.RCNN(
        add_conv_body_func=resnet.add_ResNet50_conv4_body,
        add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
        use_pyreader=cfg.use_pyreader,
        use_random=use_random)
    model.build_model(image_shape)
    losses, keys = model.loss()
    loss = losses[0]
    fetch_list = losses

    boundaries = cfg.lr_steps
    gamma = cfg.lr_gamma
    step_num = len(cfg.lr_steps)
    values = [learning_rate * (gamma**i) for i in range(step_num + 1)]

    lr = exponential_with_warmup_decay(learning_rate=learning_rate,
                                       boundaries=boundaries,
                                       values=values,
                                       warmup_iter=cfg.warm_up_iter,
                                       warmup_factor=cfg.warm_up_factor)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=lr,
        regularization=fluid.regularizer.L2Decay(cfg.weight_decay),
        momentum=cfg.momentum)
    optimizer.minimize(loss)
    fetch_list = fetch_list + [lr]

    for var in fetch_list:
        var.persistable = True

    #fluid.memory_optimize(fluid.default_main_program(), skip_opt_set=set(fetch_list))

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if cfg.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(cfg.pretrained_model, var.name))

        fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)

    if cfg.parallel:
        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.use_experimental_executor = True
        train_exe = fluid.ParallelExecutor(use_cuda=bool(cfg.use_gpu),
                                           loss_name=loss.name,
                                           build_strategy=build_strategy,
                                           exec_strategy=exec_strategy)
    else:
        train_exe = exe

    shuffle = True
    if cfg.enable_ce:
        shuffle = False
    if cfg.use_pyreader:
        train_reader = reader.train(batch_size=cfg.TRAIN.im_per_batch,
                                    total_batch_size=total_batch_size,
                                    padding_total=cfg.TRAIN.padding_minibatch,
                                    shuffle=shuffle)
        py_reader = model.py_reader
        py_reader.decorate_paddle_reader(train_reader)
    else:
        train_reader = reader.train(batch_size=total_batch_size,
                                    shuffle=shuffle)
        feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    def save_model(postfix):
        model_path = os.path.join(cfg.model_save_dir, postfix)
        if os.path.isdir(model_path):
            shutil.rmtree(model_path)
        fluid.io.save_persistables(exe, model_path)

    def train_loop_pyreader():
        py_reader.start()
        train_stats = TrainingStats(cfg.log_window, keys)
        try:
            start_time = time.time()
            prev_start_time = start_time
            for iter_id in range(cfg.max_iter):
                prev_start_time = start_time
                start_time = time.time()
                outs = train_exe.run(fetch_list=[v.name for v in fetch_list])
                stats = {
                    k: np.array(v).mean()
                    for k, v in zip(keys, outs[:-1])
                }
                train_stats.update(stats)
                logs = train_stats.log()
                strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                    now_time(), iter_id, np.mean(outs[-1]), logs,
                    start_time - prev_start_time)
                print(strs)
                sys.stdout.flush()
                if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
                    save_model("model_iter{}".format(iter_id))
            end_time = time.time()
            total_time = end_time - start_time
            last_loss = np.array(outs[0]).mean()
            if cfg.enable_ce:
                gpu_num = devices_num
                epoch_idx = iter_id + 1
                loss = last_loss
                print("kpis\teach_pass_duration_card%s\t%s" %
                      (gpu_num, total_time / epoch_idx))
                print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss))
        except (StopIteration, fluid.core.EOFException):
            py_reader.reset()

    def train_loop():
        start_time = time.time()
        prev_start_time = start_time
        start = start_time
        train_stats = TrainingStats(cfg.log_window, keys)
        for iter_id, data in enumerate(train_reader()):
            prev_start_time = start_time
            start_time = time.time()
            outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
                                 feed=feeder.feed(data))
            stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
            train_stats.update(stats)
            logs = train_stats.log()
            strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                now_time(), iter_id, np.mean(outs[-1]), logs,
                start_time - prev_start_time)
            print(strs)
            sys.stdout.flush()
            if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
                save_model("model_iter{}".format(iter_id))
            if (iter_id + 1) == cfg.max_iter:
                break
        end_time = time.time()
        total_time = end_time - start_time
        last_loss = np.array(outs[0]).mean()
        # only for ce
        if cfg.enable_ce:
            gpu_num = devices_num
            epoch_idx = iter_id + 1
            loss = last_loss
            print("kpis\teach_pass_duration_card%s\t%s" %
                  (gpu_num, total_time / epoch_idx))
            print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss))

        return np.mean(every_pass_loss)

    if cfg.use_pyreader:
        train_loop_pyreader()
    else:
        train_loop()
    save_model('model_final')
def eval():

    data_path = DatasetPath('val')
    test_list = data_path.get_file_list()

    image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
    class_nums = cfg.class_num
    devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
    devices_num = len(devices.split(","))
    total_batch_size = devices_num * cfg.TRAIN.im_per_batch
    cocoGt = COCO(test_list)
    num_id_to_cat_id_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
    category_ids = cocoGt.getCatIds()
    label_list = {
        item['id']: item['name']
        for item in cocoGt.loadCats(category_ids)
    }
    label_list[0] = ['background']

    model = model_builder.RCNN(
        add_conv_body_func=resnet.add_ResNet50_conv4_body,
        add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
        use_pyreader=False,
        mode='val')
    model.build_model(image_shape)
    pred_boxes = model.eval_bbox_out()
    if cfg.MASK_ON:
        masks = model.eval_mask_out()
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    # yapf: disable
    if cfg.pretrained_model:
        def if_exist(var):
            return os.path.exists(os.path.join(cfg.pretrained_model, var.name))
        fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)

    # yapf: enable
    test_reader = reader.test(total_batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    dts_res = []
    segms_res = []
    if cfg.MASK_ON:
        fetch_list = [pred_boxes, masks]
    else:
        fetch_list = [pred_boxes]
    eval_start = time.time()
    for batch_id, batch_data in enumerate(test_reader()):
        start = time.time()
        im_info = []
        for data in batch_data:
            im_info.append(data[1])
        results = exe.run(fetch_list=[v.name for v in fetch_list],
                          feed=feeder.feed(batch_data),
                          return_numpy=False)

        pred_boxes_v = results[0]
        if cfg.MASK_ON:
            masks_v = results[1]

        new_lod = pred_boxes_v.lod()
        nmsed_out = pred_boxes_v

        dts_res += get_dt_res(total_batch_size, new_lod[0], nmsed_out,
                              batch_data, num_id_to_cat_id_map)

        if cfg.MASK_ON and np.array(masks_v).shape != (1, 1):
            segms_out = segm_results(nmsed_out, masks_v, im_info)
            segms_res += get_segms_res(total_batch_size, new_lod[0], segms_out,
                                       batch_data, num_id_to_cat_id_map)
        end = time.time()
        print('batch id: {}, time: {}'.format(batch_id, end - start))
    eval_end = time.time()
    total_time = eval_end - eval_start
    print('average time of eval is: {}'.format(total_time / (batch_id + 1)))
    assert len(dts_res) > 0, "The number of valid bbox detected is zero.\n \
        Please use reasonable model and check input data."

    if cfg.MASK_ON:
        assert len(
            segms_res) > 0, "The number of valid mask detected is zero.\n \
            Please use reasonable model and check input data."

    with io.open("detection_bbox_result.json", 'w') as outfile:
        encode_func = unicode if six.PY2 else str
        outfile.write(encode_func(json.dumps(dts_res)))
    print("start evaluate bbox using coco api")
    cocoDt = cocoGt.loadRes("detection_bbox_result.json")
    cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()

    if cfg.MASK_ON:
        with io.open("detection_segms_result.json", 'w') as outfile:
            encode_func = unicode if six.PY2 else str
            outfile.write(encode_func(json.dumps(segms_res)))
        print("start evaluate mask using coco api")
        cocoDt = cocoGt.loadRes("detection_segms_result.json")
        cocoEval = COCOeval(cocoGt, cocoDt, 'segm')
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
Exemplo n.º 6
0
    'hair drier',
    'toothbrush'
]  #80

#config.py & (main in utility.py)
args = parse_args()
print_arguments(args)

#Step 1
image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
class_nums = cfg.class_num

#Step 2
model = model_builder.RCNN(
    add_conv_body_func=resnet.add_ResNet50_conv4_body,
    add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
    use_pyreader=False,
    mode='infer')
model.build_model(image_shape)
model_pred_boxes = model.eval_bbox_out()
model_masks = model.eval_mask_out()
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)


#Step 3
def if_exist(var):
    return os.path.exists(os.path.join(cfg.pretrained_model, var.name))


fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)
Exemplo n.º 7
0
def train():
    learning_rate = cfg.learning_rate
    image_shape = [3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]
    num_iterations = cfg.max_iter

    devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
    devices_num = len(devices.split(","))
    total_batch_size = devices_num * cfg.TRAIN.im_per_batch
    model = model_builder.RCNN(
        add_conv_body_func=resnet.add_ResNet50_conv4_body,
        add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
        use_pyreader=cfg.use_pyreader,
        use_random=False)
    model.build_model(image_shape)
    losses, keys = model.loss()
    loss = losses[0]
    fetch_list = [loss]

    boundaries = cfg.lr_steps
    gamma = cfg.lr_gamma
    step_num = len(cfg.lr_steps)
    values = [learning_rate * (gamma**i) for i in range(step_num + 1)]

    optimizer = fluid.optimizer.Momentum(
        learning_rate=exponential_with_warmup_decay(
            learning_rate=learning_rate,
            boundaries=boundaries,
            values=values,
            warmup_iter=500,
            warmup_factor=1.0 / 3.0),
        regularization=fluid.regularizer.L2Decay(0.0001),
        momentum=0.9)
    optimizer.minimize(loss)

    fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if cfg.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(cfg.pretrained_model, var.name))

        fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)

    if cfg.parallel:
        train_exe = fluid.ParallelExecutor(use_cuda=bool(cfg.use_gpu),
                                           loss_name=loss.name)

    if cfg.use_pyreader:
        train_reader = reader.train(batch_size=cfg.TRAIN.im_per_batch,
                                    total_batch_size=total_batch_size,
                                    padding_total=cfg.TRAIN.padding_minibatch,
                                    shuffle=False)
        py_reader = model.py_reader
        py_reader.decorate_paddle_reader(train_reader)
    else:
        train_reader = reader.train(batch_size=total_batch_size, shuffle=False)
        feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    def run(iterations):
        reader_time = []
        run_time = []
        total_images = 0

        for batch_id in range(iterations):
            start_time = time.time()
            data = next(train_reader())
            end_time = time.time()
            reader_time.append(end_time - start_time)
            start_time = time.time()
            if cfg.parallel:
                outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
                                     feed=feeder.feed(data))
            else:
                outs = exe.run(fluid.default_main_program(),
                               fetch_list=[v.name for v in fetch_list],
                               feed=feeder.feed(data))
            end_time = time.time()
            run_time.append(end_time - start_time)
            total_images += len(data)
            print("Batch {:d}, loss {:.6f} ".format(batch_id,
                                                    np.mean(outs[0])))
        return reader_time, run_time, total_images

    def run_pyreader(iterations):
        reader_time = [0]
        run_time = []
        total_images = 0

        py_reader.start()
        try:
            for batch_id in range(iterations):
                start_time = time.time()
                if cfg.parallel:
                    outs = train_exe.run(
                        fetch_list=[v.name for v in fetch_list])
                else:
                    outs = exe.run(fluid.default_main_program(),
                                   fetch_list=[v.name for v in fetch_list])
                end_time = time.time()
                run_time.append(end_time - start_time)
                total_images += devices_num
                print("Batch {:d}, loss {:.6f} ".format(
                    batch_id, np.mean(outs[0])))
        except fluid.core.EOFException:
            py_reader.reset()

        return reader_time, run_time, total_images

    run_func = run if not cfg.use_pyreader else run_pyreader

    # warm-up
    run_func(2)
    # profiling
    start = time.time()
    if cfg.use_profile:
        with profiler.profiler('GPU', 'total', '/tmp/profile_file'):
            reader_time, run_time, total_images = run_func(num_iterations)
    else:
        reader_time, run_time, total_images = run_func(num_iterations)

    end = time.time()
    total_time = end - start
    print(
        "Total time: {0}, reader time: {1} s, run time: {2} s, images/s: {3}".
        format(total_time, np.sum(reader_time), np.sum(run_time),
               total_images / total_time))