Exemplo n.º 1
0
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.seg_visualizer = SegVisualizer(configer)
        self.seg_parser = SegParser(configer)
        self.seg_model_manager = ModelManager(configer)
        self.seg_data_loader = DataLoader(configer)
        self.module_runner = ModuleRunner(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.seg_net = None

        self._init_model()
Exemplo n.º 2
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.seg_running_score = SegRunningScore(configer)
        self.seg_visualizer = SegVisualizer(configer)
        self.seg_loss_manager = LossManager(configer)
        self.module_runner = ModuleRunner(configer)
        self.seg_model_manager = ModelManager(configer)
        self.seg_data_loader = DataLoader(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.seg_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()
Exemplo n.º 3
0
def main(args):

    device, cuda = init_random_seeds(args.randomSeed, args.cuda, args.verbose)

    #######################################################################
    ########################## Init Logger ################################
    #######################################################################
    logger = Logger(conditional=args.cvae,
                    perceptual_loss=args.perceptualLoss)

    #######################################################################
    ############### Init data manager to handle data ######################
    #######################################################################
    data_manager = DataManager(dataset_type=args.datasetType,
                               batch_size=args.batchSize,
                               cuda=cuda,
                               verbose=args.verbose)

    #######################################################################
    ############### Init data manager to handle data ######################
    #######################################################################
    model_manager = ModelManager(conditional=args.cvae,
                                 perceptual_loss=args.perceptualLoss,
                                 num_labels=data_manager.get_num_labels(),
                                 dataset_type=args.datasetType,
                                 checkpoint_path=args.checkpointPath,
                                 device=device,
                                 verbose=args.verbose)

    #######################################################################
    ############### Init data manager to handle data ######################
    #######################################################################
    run_manager = RunManager(model_manager=model_manager,
                             data_manager=data_manager,
                             logger=logger,
                             optimizer_type=args.optimizer,
                             lr=args.learningRate,
                             epochs=args.epochs,
                             device=device,
                             verbose=args.verbose)
    # Run
    run_manager.run(args.training)
Exemplo n.º 4
0
class Trainer(object):
    """
      The class for Pose Estimation. Include train, val, val & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.seg_running_score = SegRunningScore(configer)
        self.seg_visualizer = SegVisualizer(configer)
        self.seg_loss_manager = LossManager(configer)
        self.module_runner = ModuleRunner(configer)
        self.seg_model_manager = ModelManager(configer)
        self.seg_data_loader = DataLoader(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.seg_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.seg_net = self.seg_model_manager.semantic_segmentor()
        self.seg_net = self.module_runner.load_net(self.seg_net)

        Log.info('Params Group Method: {}'.format(
            self.configer.get('optim', 'group_method')))
        if self.configer.get('optim', 'group_method') == 'decay':
            params_group = self.group_weight(self.seg_net)
        else:
            assert self.configer.get('optim', 'group_method') is None
            params_group = self._get_parameters()

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            params_group)

        self.train_loader = self.seg_data_loader.get_trainloader()
        self.val_loader = self.seg_data_loader.get_valloader()

        self.pixel_loss = self.seg_loss_manager.get_seg_loss()

    @staticmethod
    def group_weight(module):
        group_decay = []
        group_no_decay = []
        for m in module.modules():
            if isinstance(m, nn.Linear):
                group_decay.append(m.weight)
                if m.bias is not None:
                    group_no_decay.append(m.bias)
            elif isinstance(m, nn.modules.conv._ConvNd):
                group_decay.append(m.weight)
                if m.bias is not None:
                    group_no_decay.append(m.bias)
            else:
                if hasattr(m, 'weight'):
                    group_no_decay.append(m.weight)
                if hasattr(m, 'bias'):
                    group_no_decay.append(m.bias)

        assert len(list(
            module.parameters())) == len(group_decay) + len(group_no_decay)
        groups = [
            dict(params=group_decay),
            dict(params=group_no_decay, weight_decay=.0)
        ]
        return groups

    def _get_parameters(self):
        bb_lr = []
        nbb_lr = []
        params_dict = dict(self.seg_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone' not in key:
                nbb_lr.append(value)
            else:
                bb_lr.append(value)

        params = [{
            'params': bb_lr,
            'lr': self.configer.get('lr', 'base_lr')
        }, {
            'params':
            nbb_lr,
            'lr':
            self.configer.get('lr', 'base_lr') *
            self.configer.get('lr', 'nbb_mult')
        }]
        return params

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.seg_net.train()
        start_time = time.time()

        for i, data_dict in enumerate(self.train_loader):
            if self.configer.get('lr', 'metric') == 'iters':
                self.scheduler.step(self.configer.get('iters'))
            else:
                self.scheduler.step(self.configer.get('epoch'))

            if self.configer.get('lr', 'is_warm'):
                self.module_runner.warm_lr(self.configer.get('iters'),
                                           self.scheduler,
                                           self.optimizer,
                                           backbone_list=[
                                               0,
                                           ])
            inputs = data_dict['img']
            targets = data_dict['labelmap']
            self.data_time.update(time.time() - start_time)
            # Change the data type.
            # inputs, targets = self.module_runner.to_device(inputs, targets)

            # Forward pass.
            outputs = self.seg_net(inputs)
            # outputs = self.module_utilizer.gather(outputs)
            # Compute the loss of the train batch & backward.
            loss = self.pixel_loss(outputs,
                                   targets,
                                   gathered=self.configer.get(
                                       'network', 'gathered'))
            if self.configer.exists('train', 'loader') and self.configer.get(
                    'train', 'loader') == 'rs':
                batch_size = self.configer.get(
                    'train', 'batch_size') * self.configer.get(
                        'train', 'batch_per_gpu')
                self.train_losses.update(loss.item(), batch_size)
            else:
                self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.module_runner.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('iters') == self.configer.get(
                    'solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.__val()

        self.configer.plus_one('epoch')

    def __val(self, data_loader=None):
        """
          Validation function during the train phase.
        """
        self.seg_net.eval()
        start_time = time.time()

        data_loader = self.val_loader if data_loader is None else data_loader
        for j, data_dict in enumerate(data_loader):
            inputs = data_dict['img']
            targets = data_dict['labelmap']

            with torch.no_grad():
                # Change the data type.
                inputs, targets = self.module_runner.to_device(inputs, targets)
                # Forward pass.
                outputs = self.seg_net(inputs)
                # Compute the loss of the val batch.
                loss = self.pixel_loss(outputs,
                                       targets,
                                       gathered=self.configer.get(
                                           'network', 'gathered'))
                outputs = self.module_runner.gather(outputs)

            self.val_losses.update(loss.item(), inputs.size(0))
            self._update_running_score(outputs[-1], data_dict['meta'])
            # self.seg_running_score.update(pred.max(1)[1].cpu().numpy(), targets.cpu().numpy())

            # Update the vars of the val phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()

        self.configer.update(['performance'],
                             self.seg_running_score.get_mean_iou())
        self.configer.update(['val_loss'], self.val_losses.avg)
        self.module_runner.save_net(self.seg_net, save_mode='performance')
        self.module_runner.save_net(self.seg_net, save_mode='val_loss')

        # Print the log info & reset the states.
        Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                                loss=self.val_losses))
        Log.info('Mean IOU: {}\n'.format(
            self.seg_running_score.get_mean_iou()))
        Log.info('Pixel ACC: {}\n'.format(
            self.seg_running_score.get_pixel_acc()))
        self.batch_time.reset()
        self.val_losses.reset()
        self.seg_running_score.reset()
        self.seg_net.train()

    def _update_running_score(self, pred, metas):
        pred = pred.permute(0, 2, 3, 1)
        for i in range(pred.size(0)):
            ori_img_size = metas[i]['ori_img_size']
            border_size = metas[i]['border_size']
            ori_target = metas[i]['ori_target']
            total_logits = cv2.resize(
                pred[i, :border_size[1], :border_size[0]].cpu().numpy(),
                tuple(ori_img_size),
                interpolation=cv2.INTER_CUBIC)
            labelmap = np.argmax(total_logits, axis=-1)
            self.seg_running_score.update(labelmap[None], ori_target[None])

    def train(self):
        # cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('iters') < self.configer.get(
                'solver', 'max_iters'):
            self.__train()

        self.__val(data_loader=self.seg_data_loader.get_valloader(
            dataset='val'))
        self.__val(data_loader=self.seg_data_loader.get_valloader(
            dataset='train'))
Exemplo n.º 5
0
class Tester(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.seg_visualizer = SegVisualizer(configer)
        self.seg_parser = SegParser(configer)
        self.seg_model_manager = ModelManager(configer)
        self.seg_data_loader = DataLoader(configer)
        self.module_runner = ModuleRunner(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.seg_net = None

        self._init_model()

    def _init_model(self):
        self.seg_net = self.seg_model_manager.semantic_segmentor()
        self.seg_net = self.module_runner.load_net(self.seg_net)
        self.seg_net.eval()

    def _get_blob(self, ori_image, scale=None):
        assert scale is not None
        image = None
        if self.configer.exists('test', 'input_size'):
            image = self.blob_helper.make_input(image=ori_image,
                                                input_size=self.configer.get(
                                                    'test', 'input_size'),
                                                scale=scale)

        elif self.configer.exists(
                'test', 'min_side_length') and not self.configer.exists(
                    'test', 'max_side_length'):
            image = self.blob_helper.make_input(
                image=ori_image,
                min_side_length=self.configer.get('test', 'min_side_length'),
                scale=scale)

        elif not self.configer.exists(
                'test', 'min_side_length') and self.configer.exists(
                    'test', 'max_side_length'):
            image = self.blob_helper.make_input(
                image=ori_image,
                max_side_length=self.configer.get('test', 'max_side_length'),
                scale=scale)

        elif self.configer.exists('test',
                                  'min_side_length') and self.configer.exists(
                                      'test', 'max_side_length'):
            image = self.blob_helper.make_input(
                image=ori_image,
                min_side_length=self.configer.get('test', 'min_side_length'),
                max_side_length=self.configer.get('test', 'max_side_length'),
                scale=scale)

        else:
            Log.error('Test setting error')
            exit(1)

        b, c, h, w = image.size()
        border_hw = [h, w]
        if self.configer.exists('test', 'fit_stride'):
            stride = self.configer.get('test', 'fit_stride')

            pad_w = 0 if (w % stride == 0) else stride - (w % stride)  # right
            pad_h = 0 if (h % stride == 0) else stride - (h % stride)  # down

            expand_image = torch.zeros(
                (b, c, h + pad_h, w + pad_w)).to(image.device)
            expand_image[:, :, 0:h, 0:w] = image
            image = expand_image

        return image, border_hw

    def __test_img(self, image_path, label_path, vis_path, raw_path):
        Log.info('Image Path: {}'.format(image_path))
        ori_image = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        total_logits = None
        if self.configer.get('test', 'mode') == 'ss_test':
            total_logits = self.ss_test(ori_image)

        elif self.configer.get('test', 'mode') == 'sscrop_test':
            total_logits = self.sscrop_test(ori_image)

        elif self.configer.get('test', 'mode') == 'ms_test':
            total_logits = self.ms_test(ori_image)

        elif self.configer.get('test', 'mode') == 'mscrop_test':
            total_logits = self.mscrop_test(ori_image)

        else:
            Log.error('Invalid test mode:{}'.format(
                self.configer.get('test', 'mode')))
            exit(1)

        label_map = np.argmax(total_logits, axis=-1)
        label_img = np.array(label_map, dtype=np.uint8)
        ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))
        image_canvas = self.seg_parser.colorize(label_img,
                                                image_canvas=ori_img_bgr)
        ImageHelper.save(image_canvas, save_path=vis_path)
        ImageHelper.save(ori_image, save_path=raw_path)

        if self.configer.exists('data', 'label_list'):
            label_img = self.__relabel(label_img)

        if self.configer.exists('data',
                                'reduce_zero_label') and self.configer.get(
                                    'data', 'reduce_zero_label'):
            label_img = label_img + 1
            label_img = label_img.astype(np.uint8)

        label_img = Image.fromarray(label_img, 'P')
        Log.info('Label Path: {}'.format(label_path))
        ImageHelper.save(label_img, label_path)

    def ss_test(self, ori_image):
        ori_width, ori_height = ImageHelper.get_size(ori_image)
        total_logits = np.zeros(
            (ori_height, ori_width, self.configer.get('data', 'num_classes')),
            np.float32)
        image, border_hw = self._get_blob(ori_image, scale=1.0)
        results = self._predict(image)
        results = cv2.resize(results[:border_hw[0], :border_hw[1]],
                             (ori_width, ori_height),
                             interpolation=cv2.INTER_CUBIC)
        total_logits += results
        return total_logits

    def sscrop_test(self, ori_image):
        ori_width, ori_height = ImageHelper.get_size(ori_image)
        total_logits = np.zeros(
            (ori_height, ori_width, self.configer.get('data', 'num_classes')),
            np.float32)
        image, border_hw = self._get_blob(ori_image, scale=1.0)
        crop_size = self.configer.get('test', 'crop_size')
        if image.size()[3] > crop_size[0] and image.size()[2] > crop_size[1]:
            results = self._crop_predict(image, crop_size)
        else:
            results = self._predict(image)

        results = cv2.resize(results[:border_hw[0], :border_hw[1]],
                             (ori_width, ori_height),
                             interpolation=cv2.INTER_CUBIC)
        total_logits += results
        return total_logits

    def mscrop_test(self, ori_image):
        ori_width, ori_height = ImageHelper.get_size(ori_image)
        crop_size = self.configer.get('test', 'crop_size')
        total_logits = np.zeros(
            (ori_height, ori_width, self.configer.get('data', 'num_classes')),
            np.float32)
        for scale in self.configer.get('test', 'scale_search'):
            image, border_hw = self._get_blob(ori_image, scale=scale)
            if image.size()[3] > crop_size[0] and image.size(
            )[2] > crop_size[1]:
                results = self._crop_predict(image, crop_size)
            else:
                results = self._predict(image)

            results = cv2.resize(results[:border_hw[0], :border_hw[1]],
                                 (ori_width, ori_height),
                                 interpolation=cv2.INTER_CUBIC)
            total_logits += results

            if self.configer.get('data', 'image_tool') == 'cv2':
                mirror_image = cv2.flip(ori_image, 1)
            else:
                mirror_image = ori_image.transpose(Image.FLIP_LEFT_RIGHT)

            image, border_hw = self._get_blob(mirror_image, scale=1.0)
            if image.size()[3] > crop_size[0] and image.size(
            )[2] > crop_size[1]:
                results = self._crop_predict(image, crop_size)
            else:
                results = self._predict(image)

            results = results[:border_hw[0], :border_hw[1]]
            results = cv2.resize(results[:, ::-1], (ori_width, ori_height),
                                 interpolation=cv2.INTER_CUBIC)
            total_logits += results

        return total_logits

    def ms_test(self, ori_image):
        ori_width, ori_height = ImageHelper.get_size(ori_image)
        total_logits = np.zeros(
            (ori_height, ori_width, self.configer.get('data', 'num_classes')),
            np.float32)
        for scale in self.configer.get('test', 'scale_search'):
            image, border_hw = self._get_blob(ori_image, scale=scale)
            results = self._predict(image)
            results = cv2.resize(results[:border_hw[0], :border_hw[1]],
                                 (ori_width, ori_height),
                                 interpolation=cv2.INTER_CUBIC)
            total_logits += results

            if self.configer.get('data', 'image_tool') == 'cv2':
                mirror_image = cv2.flip(ori_image, 1)
            else:
                mirror_image = ori_image.transpose(Image.FLIP_LEFT_RIGHT)

            image, border_hw = self._get_blob(mirror_image, scale=scale)
            results = self._predict(image)
            results = results[:border_hw[0], :border_hw[1]]
            results = cv2.resize(results[:, ::-1], (ori_width, ori_height),
                                 interpolation=cv2.INTER_CUBIC)
            total_logits += results

        return total_logits

    def _crop_predict(self, image, crop_size):
        height, width = image.size()[2:]
        np_image = image.squeeze(0).permute(1, 2, 0).cpu().numpy()
        height_starts = self._decide_intersection(height, crop_size[1])
        width_starts = self._decide_intersection(width, crop_size[0])
        split_crops = []
        for height in height_starts:
            for width in width_starts:
                image_crop = np_image[height:height + crop_size[1],
                                      width:width + crop_size[0]]
                split_crops.append(image_crop[np.newaxis, :])

        split_crops = np.concatenate(
            split_crops, axis=0)  # (n, crop_image_size, crop_image_size, 3)
        inputs = torch.from_numpy(split_crops).permute(0, 3, 1,
                                                       2).to(self.device)
        with torch.no_grad():
            results = self.seg_net.forward(inputs)
            results = results[-1].permute(0, 2, 3, 1).cpu().numpy()

        reassemble = np.zeros(
            (np_image.shape[0], np_image.shape[1], results.shape[-1]),
            np.float32)
        index = 0
        for height in height_starts:
            for width in width_starts:
                reassemble[height:height + crop_size[1],
                           width:width + crop_size[0]] += results[index]
                index += 1

        return reassemble

    def _decide_intersection(self, total_length, crop_length):
        stride = int(crop_length * self.configer.get(
            'test', 'crop_stride_ratio'))  # set the stride as the paper do
        times = (total_length - crop_length) // stride + 1
        cropped_starting = []
        for i in range(times):
            cropped_starting.append(stride * i)

        if total_length - cropped_starting[-1] > crop_length:
            cropped_starting.append(total_length -
                                    crop_length)  # must cover the total image

        return cropped_starting

    def _predict(self, inputs):
        with torch.no_grad():
            results = self.seg_net.forward(inputs)
            results = results[-1].squeeze(0).permute(1, 2, 0).cpu().numpy()

        return results

    def __relabel(self, label_map):
        height, width = label_map.shape
        label_dst = np.zeros((height, width), dtype=np.uint8)
        for i in range(self.configer.get('data', 'num_classes')):
            label_dst[label_map == i] = self.configer.get(
                'data', 'label_list')[i]

        label_dst = np.array(label_dst, dtype=np.uint8)

        return label_dst

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results', self.configer.get('dataset'))

        test_img = self.configer.get('test', 'test_img')
        test_dir = self.configer.get('test', 'test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            filename = test_img.rstrip().split('/')[-1]
            label_path = os.path.join(
                base_dir, 'label',
                '{}.png'.format('.'.join(filename.split('.')[:-1])))
            raw_path = os.path.join(base_dir, 'raw', filename)
            vis_path = os.path.join(
                base_dir, 'vis',
                '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
            FileHelper.make_dirs(label_path, is_file=True)
            FileHelper.make_dirs(raw_path, is_file=True)
            FileHelper.make_dirs(vis_path, is_file=True)

            self.__test_img(test_img, label_path, vis_path, raw_path)

        else:
            base_dir = os.path.join(
                base_dir, 'test_dir',
                self.configer.get('checkpoints', 'checkpoints_name'),
                self.configer.get('test', 'out_dir'))
            FileHelper.make_dirs(base_dir)

            for filename in FileHelper.list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                label_path = os.path.join(
                    base_dir, 'label',
                    '{}.png'.format('.'.join(filename.split('.')[:-1])))
                raw_path = os.path.join(base_dir, 'raw', filename)
                vis_path = os.path.join(
                    base_dir, 'vis',
                    '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
                FileHelper.make_dirs(label_path, is_file=True)
                FileHelper.make_dirs(raw_path, is_file=True)
                FileHelper.make_dirs(vis_path, is_file=True)

                self.__test_img(image_path, label_path, vis_path, raw_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results', self.configer.get('dataset'),
                                'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        count = 0
        for i, data_dict in enumerate(self.seg_data_loader.get_trainloader()):
            inputs = data_dict['img']
            targets = data_dict['labelmap']
            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                image_bgr = self.blob_helper.tensor2bgr(inputs[j])
                label_map = targets[j].numpy()
                image_canvas = self.seg_parser.colorize(label_map,
                                                        image_canvas=image_bgr)
                cv2.imwrite(
                    os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()