Exemplo n.º 1
0
    def __init__(self, in_channel=3, n_class=1):
        super(Efficient_SIIMD, self).__init__()
        efficient = EfficientNet.from_pretrained('efficientnet-b0')
        self.block0 = nn.Sequential(efficient._conv_stem, efficient._bn0)

        print(len(efficient._blocks))
        self.block1 = nn.Sequential(*efficient._blocks[:5])
        self.block2 = nn.Sequential(*efficient._blocks[5:10])
        self.block3 = nn.Sequential(*efficient._blocks[10:16])

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = Classifier(
            efficient._blocks[-1]._project_conv.out_channels, 128, n_class)

        # for para in self.block0.parameters():
        #     para.requires_grad = False
        #
        # for para in self.block1.parameters():
        #     para.requires_grad = False
        #
        # for para in self.block2.parameters():
        #     para.requires_grad = False

        # for para in self.block3.parameters():
        #     para.requires_grad = False

        for m in self.classifier.modules():
            if isinstance(m, nn.Linear):
                init_weights(m, init_type='kaiming')
            elif isinstance(m, nn.BatchNorm1d):
                init_weights(m, init_type='kaiming')
Exemplo n.º 2
0
    def __init__(self, in_channel, mid_channel, n_class, dropout=0.5):
        super(Classifier, self).__init__()
        # solution 1
        self.layer1 = nn.Dropout(0.5)
        self.layer2 = nn.Sequential(nn.Linear(in_channel, mid_channel),
                                    nn.BatchNorm1d(mid_channel), nn.ReLU())

        self.layer3 = nn.Linear(mid_channel, n_class)

        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                init_weights(m, init_type='kaiming')
            elif isinstance(m, nn.BatchNorm1d):
                init_weights(m, init_type='kaiming')
Exemplo n.º 3
0
    def __init__(self, in_channel=3, n_class=1):
        super(Regnet_SIIM, self).__init__()
        backbone = regnet_800M(pretrained=True)
        self.stem = list(list(backbone.children())[0].children())[0]
        self.feature = nn.Sequential(*list(list(backbone.children())[0].children())[1:-1])

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = Classifier(672, 320, n_class)

        for m in self.classifier.modules():
            if isinstance(m, nn.Linear):
                init_weights(m, init_type='kaiming')
            elif isinstance(m, nn.BatchNorm1d):
                init_weights(m, init_type='kaiming')
Exemplo n.º 4
0
    def __init__(self, in_channel=3, n_class=1):
        super(ResNet_SIIM, self).__init__()

        resnet = models.resnet34(True)
        self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.maxpool)
        self.layer1 = resnet.layer1
        self.layer2 = resnet.layer2
        self.layer3 = resnet.layer3
        self.layer4 = resnet.layer4

        self.avgpool = resnet.avgpool
        self.fc_reduce = nn.Linear(resnet.fc.in_features, 32)
        # self.features = nn.Sequential(*list(resnet.children())[:-1])

        self.classifier = Classifier(32, 32, n_class)

        for m in self.classifier.modules():
            if isinstance(m, nn.Linear):
                init_weights(m, init_type='kaiming')
            elif isinstance(m, nn.BatchNorm1d):
                init_weights(m, init_type='kaiming')