Exemplo n.º 1
0
    def __init__(self, teacher_path):
        super().__init__()

        teacher_yaml = teacher_path.parent / 'config.yaml'
        teacher_args = load_yaml(teacher_yaml)['model_args']
        teacher = Network(**teacher_args)
        teacher.load_state_dict(torch.load(str(teacher_path)))

        self.teacher = teacher
        self.converter = ConverterTorch()
Exemplo n.º 2
0
def main(config):
    # from thop import profile
    # net = Network(**config['model_args'])
    # input = torch.randn(1, 6, 160, 384)  # 模型输入的形状,batch_size=1
    # flops, params = profile(net, inputs=(input,))
    # print(flops / 1e9, 'G', params / 1e6)  # flops单位G,para单位M
    # aa


    data_train, data_val = get_dataset(config['source'])(**config['data_args'])
    net = Network(**config['model_args']).to(config['device'])
    net.load_state_dict(torch.load(str(config['model_path'])))

    # wandb.init(
    #     project='task-distillation-eval',
    #     config=config, id=config['run_name'], resume='auto')
    # wandb.save(str(Path(wandb.run.dir) / '*.t7'))

    with torch.no_grad():
        MAE_val, RMSE_val, EVS_val = net_eval(net, data_val, config)

    print(' MAE_val', MAE_val)
    print(' RMSE_val: ', RMSE_val)
    print(' EVS_val: ', EVS_val)
Exemplo n.º 3
0
class Planner(object):
    def __init__(self, path_to_conf_file):
        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        self.transform = torchvision.transforms.ToTensor()
        self.converter = ConverterTorch().to(self.device)

        self.target_index = 65
        self.speed_mult = 2.5

        path_to_conf_file = Path(path_to_conf_file)
        config = load_yaml(path_to_conf_file.parent / 'config.yaml')

        self.net = Network(**config['model_args']).to(self.device)
        self.net.load_state_dict(torch.load(path_to_conf_file))
        self.net.eval()

    @torch.no_grad()
    def run_step(self, rgb, rgb_forward, viz=None):
        if Modular:
            # Modularity and Abstract
            rgb = Image.fromarray(rgb).convert('RGB')
            img = input_transform_cityscapes(rgb)
            img = img.cuda().unsqueeze(0)
            rgb_forward = Image.fromarray(rgb_forward).convert('RGB')
            img_forward = input_transform_cityscapes(rgb_forward)
            img_forward = img_forward.cuda().unsqueeze(0)

            output = model(img)
            label = output[0].max(0)[1].byte().cpu().data
            label_color = Colorize()(label.unsqueeze(0))
            rgb = ToPILImage()(label_color)
            rgb.save('./seg.jpg')

            output = model(img_forward)
            label = output[0].max(0)[1].byte().cpu().data
            label_color = Colorize()(label.unsqueeze(0))
            rgb_forward = ToPILImage()(label_color)
            rgb_forward.save('./seg_2.jpg')

        img = self.transform(rgb).to(self.device).unsqueeze(0)
        img_forward = self.transform(rgb_forward).to(self.device).unsqueeze(0)

        # print(img_forward.shape)
        model_input = torch.cat((img_forward, img), 1)

        cam_coords = self.net(model_input)
        cam_coords[..., 0] = (cam_coords[..., 0] +
                              1) / 2 * img.shape[-1]  # rgb coords
        cam_coords[..., 1] = (cam_coords[..., 1] + 1) / 2 * img.shape[-2]

        map_coords = self.converter.cam_to_map(
            cam_coords).cpu().numpy().squeeze()
        world_coords = self.converter.cam_to_world(
            cam_coords).cpu().numpy().squeeze()

        target_speed = np.sqrt(
            ((world_coords[:2] - world_coords[1:3])**2).sum(1).mean())
        target_speed *= self.speed_mult

        theta1 = np.degrees(np.arctan2(world_coords[0][0], world_coords[0][1]))
        theta2 = np.degrees(np.arctan2(world_coords[4][0], world_coords[4][1]))
        # print(abs(theta2 - theta1))
        if abs(theta2 - theta1) < 2:
            target_speed *= self.speed_mult
        else:
            target_speed *= 1.2

        curve = spline(map_coords + 1e-8 * np.random.rand(*map_coords.shape),
                       100)
        target = curve[self.target_index]

        curve_world = spline(
            world_coords + 1e-8 * np.random.rand(*world_coords.shape), 100)
        target_world = curve_world[self.target_index]

        if viz:
            viz.planner_draw(cam_coords.cpu().numpy().squeeze(), map_coords,
                             curve, target)

        return target_world, target_speed
Exemplo n.º 4
0
class DQNAgent:

    def __init__(
        self,
        env: UnityEnvironment,
        memory_size: int,
        batch_size: int,
        target_update: int,
        epsilon_decay: float = 1 / 2000,
        max_epsilon: float = 1.0,
        min_epsilon: float = 0.1,
        gamma: float = 0.99,
        ):
        self.brain_name = env.brain_names[0]
        self.brain = env.brains[self.brain_name]
        env_info = env.reset(train_mode=True)[self.brain_name]
        self.env = env
        action_size = self.brain.vector_action_space_size
        state = env_info.vector_observations[0]
        state_size = len(state)
        
        self.obs_dim = state_size
        self.action_dim = 1

        self.memory = ReplayBuffer(self.obs_dim, self.action_dim, memory_size, batch_size)


        self.batch_size = batch_size
        self.target_update = target_update
        self.epsilon_decay = epsilon_decay
        self.max_epsilon = max_epsilon
        self.min_epsilon = min_epsilon
        self.gamma = gamma
        self.epsilon = max_epsilon

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        
        self.dqn = Network(self.obs_dim, self.action_dim)
        self.dqn_target = Network(self.obs_dim, self.action_dim)
        self.dqn_target.load_state_dict(self.dqn.state_dict())
        self.dqn_target.eval()

        self.optimizer = optim.Adam(self.dqn.parameters(), lr=5e-5)

        self.transition = list()

        self.is_test = False

    def select_action(self, state: np.ndarray) -> np.int64:
        """ Select an action given input """
        if self.epsilon > np.random.random():
            selected_action = np.random.random_integers(0, self.action_dim-1)
        else:
            selected_action = self.dqn(
                torch.FloatTensor(state).to(self.device)
            )
            selected_action = np.argmax(selected_action.detach().cpu().numpy())

        
        if not self.is_test:
            self.transition = [state, selected_action]
        
        return selected_action

    def step(self, action: np.int64) -> Tuple[np.ndarray, np.float64, bool]:
        "Take an action and return environment response"
        env_info = self.env.step(action)[self.brain_name]
        next_state = env_info.vector_observations[0]   
        reward = env_info.rewards[0]                   
        done = env_info.local_done[0]
    
        if not self.is_test:
            self.transition += [reward, next_state, done]
            self.memory.store(*self.transition)

        return next_state, reward, done

    def update_model(self) -> torch.Tensor:
        """ Update model by gradient descent"""
        samples = self.memory.sample_batch()
        loss = self._compute_dqn_loss(samples)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return loss.item()

    def train(self, num_episode: int, max_iteration: int=1000, plotting_interval: int=400):
        """  train the agent """
        self.is_test = False

        env_info = self.env.reset(train_mode=True)[self.brain_name]
        state = env_info.vector_observations[0]

        update_cnt = 0
        epsilons = []
        losses = []
        avg_losses= []
        scores = []
        avg_scores = []

        for episode in range(num_episode):
            env_info = self.env.reset(train_mode=True)[self.brain_name]
            state = env_info.vector_observations[0]
            score = 0
            for iter in range(max_iteration):
                action = self.select_action(state)
                next_state, reward, done = self.step(action)
                state = next_state
                score += reward
                if done:
                    break

                if len(self.memory) > self.batch_size:
                    loss = self.update_model()
                    losses.append(loss)
                    update_cnt += 1

            avg_losses.append(np.mean(losses))
            losses = []
            self.epsilon = max(
                self.min_epsilon, self.epsilon - (
                    self.max_epsilon - self.min_epsilon
                ) * self.epsilon_decay
            )
            epsilons.append(self.epsilon)
            
            if update_cnt % self.target_update == 0:
                self._target_hard_update()
            scores.append(score)
            epsilons.append(self.epsilon)

            if episode >= 100:
                avg_scores.append(np.mean(scores[-100:]))
            self._plot(episode, scores, avg_scores, avg_losses, epsilons)
        torch.save(self.dqn.state_dict(), "model_weight/dqn.pt")



    def test(self):
        """ Test agent """
        self.is_test = True
        env_info = self.env.reset(train_mode=False)[self.brain_name]
        state = env_info.vector_observations[0]
        done = False
        score = 0

        while not done:
            action = self.select_action(state)
            next_state, reward, done = self.step(action)

            state = next_state
            score += reward

        print("score: ", score)
        self.env.close()


    def _compute_dqn_loss(self, samples: Dict[str, np.ndarray], gamma: float=0.99) -> torch.Tensor:
        """ Compute and return DQN loss"""
        gamma = self.gamma
        device = self.device
        state = torch.FloatTensor(samples["obs"]).to(device)
        next_state = torch.FloatTensor(samples["next_obs"]).to(device)
        action = torch.LongTensor(samples["acts"]).reshape(-1, 1).to(device)
        reward = torch.FloatTensor(samples["rews"]).reshape(-1, 1).to(device)
        done = torch.FloatTensor(samples["done"]).reshape(-1, 1).to(device)
        
        curr_q_value = self.dqn(state).gather(1, action)
            
        next_q_value = self.dqn_target(next_state).max(dim=1, keepdim=True)[0].detach()
        mask = 1 - done
        target = (reward + gamma * next_q_value * mask).to(device)
        loss = F.smooth_l1_loss(curr_q_value, target)

        return loss


    def _target_hard_update(self):
        """ update target network """
        self.dqn_target.load_state_dict(self.dqn.state_dict())

    def _plot(
        self,
        episode :int,
        scores: List[float],
        avg_scores: List[float],
        losses: List[float],
        epsilons: List[float]
    ):
        """ Plot the training process"""
        plt.figure(figsize=(20, 5))
        plt.subplot(141)
        if len(avg_scores) > 0:
            plt.title("Average reward per 100 episodes. Score: %s" % (avg_scores[-1]))
        else:
            plt.title("Average reward over 100 episodes.")
        plt.plot([100 + i for i in range(len(avg_scores))], avg_scores)
        plt.subplot(142)
        plt.title("episode %s. Score: %s" % (episode, np.mean(scores[-10:])))
        plt.plot(scores)
        plt.subplot(143)
        plt.title('Loss')
        plt.plot(losses)
        plt.subplot(144)
        plt.title('epsilons')
        plt.plot(epsilons)
        plt.savefig('plots/dqn_result.png')
Exemplo n.º 5
0

if __name__ == "__main__":
    args = parse_args()

    coloredlogs.install(
        level="INFO", fmt="%(asctime)s %(filename)s %(levelname)s %(message)s")

    logging.info("Called with args: " + str(args))

    if args.cfg:
        cfg_from_file(args.cfg)

    net = Network()
    checkpoint = torch.load(osp.abspath(args.checkpoint))
    net.load_state_dict(checkpoint["model"])
    logging.info("Loaded checkpoint from: %s" % args.checkpoint)
    net.eval()
    device = torch.device("cuda:%s" % args.gpu if args.gpu != -1 else "cpu")
    net.to(device)

    # Extract feature of the query person
    query_img = cv2.imread("imgs/query.jpg")
    query_roi = np.array([0, 0, 466, 943])  # [x1, y1, x2, y2]
    query_feat = net.inference(query_img, query_roi).view(-1, 1)

    # Get gallery images
    gallery_imgs = sorted(glob("imgs/gallery*.jpg"))

    for gallery_img in gallery_imgs:
        logging.info("Detecting %s" % gallery_img)
Exemplo n.º 6
0
    output_dir = osp.join(cfg.DATA_DIR, "trained_model")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    assert args.dataset in ["psdb_train",
                            "psdb_test"], "Unknown dataset: %s" % args.dataset
    dataset = PSDB(args.dataset)
    dataloader = DataLoader(dataset, batch_size=1, sampler=PSSampler(dataset))
    logging.info("Loaded dataset: %s" % args.dataset)

    # Initialize model
    net = Network()
    if args.weights:
        state_dict = torch.load(args.weights)
        net.load_state_dict(
            {k: v
             for k, v in state_dict.items() if k in net.state_dict()})
        logging.info("Loaded pretrained model from: %s" % args.weights)

    # Initialize optimizer
    lr = cfg.TRAIN.LEARNING_RATE
    weight_decay = cfg.TRAIN.WEIGHT_DECAY
    params = []
    for k, v in net.named_parameters():
        if v.requires_grad:
            if "BN" in k:
                params += [{"params": [v], "lr": lr, "weight_decay": 0}]
            elif "bias" in k:
                params += [{"params": [v], "lr": 2 * lr, "weight_decay": 0}]
            else:
                params += [{
Exemplo n.º 7
0
def main():
    if not torch.cuda.is_available():
        print('No GPU device available')
        sys.exit(1)
    np.random.seed(args.seed)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    torch.cuda.manual_seed(args.seed)
    print("args = %s", args)
    print("unparsed args = %s", unparsed)

    # prepare dataset
    if args.cifar100:
        train_transform, valid_transform = utils._data_transforms_cifar100(args)
    else:
        train_transform, valid_transform = utils._data_transforms_cifar10(args)
    if args.cifar100:
        train_data = dset.CIFAR100(root=args.tmp_data_dir, train=True, download=True, transform=train_transform)
        valid_data = dset.CIFAR100(root=args.tmp_data_dir, train=False, download=True, transform=valid_transform)
    else:
        train_data = dset.CIFAR10(root=args.tmp_data_dir, train=True, download=True, transform=train_transform)
        valid_data = dset.CIFAR10(root=args.tmp_data_dir, train=False, download=True, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.workers)

    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers)

    ood_queues = {}
    for k in ['svhn', 'lsun_resized', 'imnet_resized']:
        ood_path = os.path.join(args.ood_dir, k)
        dset_ = dset.ImageFolder(ood_path, valid_transform)
        loader = torch.utils.data.DataLoader(
            dset_, batch_size=args.batch_size, shuffle=False,
            pin_memory=True, num_workers=args.workers
        )
        ood_queues[k] = loader

    # build Network
    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()
    supernet = Network(
        args.init_channels, CIFAR_CLASSES, args.layers,
        combine_method=args.feat_comb, is_cosine=args.is_cosine,
    )
    supernet.cuda()
    # print(len(supernet.cells))
    ckpt = torch.load(args.load_at)
    print(args.load_at)
    supernet.load_state_dict(ckpt)
    supernet.generate_share_alphas()
    # alphas = torch.Tensor([
    #     [0., 1., 1.],
    #     [0., 1., 0.],
    #     [0., 1., 0.],
    #     [0., 1., 1.],
    #     [0., 1., 1.],
    #     [0., 1., 1.],
    #     [0., 1., 0.],
    #     [0., 1., 0.],
    #     [0., 1., 1.],
    #     [0., 1., 0.],
    #     [0., 1., 0.],
    #     [0., 1., 1.],
    #     [0., 1., 0.],
    #     [0., 1., 1.]
    # ]).cuda()
    # for i in range(8):
    #     supernet.cells[i].ops_alphas = alphas
    alphas = supernet.cells[0].ops_alphas
    print(alphas)
    out_dir = './results/{}/eval_out/{}'.format(args.load_at.split('/')[2], args.seed)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    torch.save(alphas, os.path.join(out_dir, 'alphas.pt'))
    with open(os.path.join(out_dir, 'alphas.txt'), 'w') as f:
        for i in alphas.cpu().detach().numpy():
            for j in i:
                f.write('{:d}'.format(int(j)))
            f.write('\n')

    if args.cifar100:
        weight_decay = 5e-4
    else:
        weight_decay = 3e-4
    optimizer = torch.optim.SGD(
        supernet.parameters(),
        args.learning_rate,
        momentum=args.momentum,
        weight_decay=weight_decay,
    )
    # scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), eta_min=0)

    valid_acc, _ = infer(valid_queue, supernet, criterion)
    print('valid_acc {:.2f}'.format(valid_acc))
    lg_aucs, sm_aucs, ent_aucs = ood_eval(valid_queue, ood_queues, supernet, criterion)
    with open(os.path.join(out_dir, 'before.txt'), 'w') as f:
        f.write('-'.join([str(valid_acc), str(lg_aucs), str(sm_aucs), str(ent_aucs)]))

    if args.fine_tune:
        for epoch in range(args.epochs):
            # scheduler.step()
            print('epoch {} lr {:.4f}'.format(epoch, 0.001))#scheduler.get_lr()[0]))

            train_acc, _ = train(train_queue, supernet, criterion, optimizer)
            print('train_acc {:.2f}'.format(train_acc))

            valid_acc, _ = infer(valid_queue, supernet, criterion)
            print('valid_acc {:.2f}'.format(valid_acc))

        lg_aucs, sm_aucs, ent_aucs = ood_eval(valid_queue, ood_queues, supernet, criterion)
        with open(os.path.join(out_dir, 'after.txt'), 'w') as f:
            f.write('-'.join([str(valid_acc), str(lg_aucs), str(sm_aucs), str(ent_aucs)]))
Exemplo n.º 8
0
def main():
    if not torch.cuda.is_available():
        print('No GPU device available')
        sys.exit(1)
    np.random.seed(args.seed)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    torch.cuda.manual_seed(args.seed)
    print("args = %s", args)
    print("unparsed args = %s", unparsed)

    # prepare dataset
    if args.cifar100:
        train_transform, valid_transform = utils._data_transforms_cifar100(args)
    else:
        train_transform, valid_transform = utils._data_transforms_cifar10(args)
    if args.cifar100:
        train_data = dset.CIFAR100(root=args.tmp_data_dir, train=True, download=False, transform=train_transform)
        valid_data = dset.CIFAR100(root=args.tmp_data_dir, train=False, download=False, transform=valid_transform)
    else:
        train_data = dset.CIFAR10(root=args.tmp_data_dir, train=True, download=False, transform=train_transform)
        valid_data = dset.CIFAR10(root=args.tmp_data_dir, train=False, download=False, transform=valid_transform)

    train_queue = torch.utils.data.DataLoader(
        train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.workers)

    valid_queue = torch.utils.data.DataLoader(
        valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers)


    # build Network
    criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()
    supernet = Network(
        args.init_channels, CIFAR_CLASSES, args.layers
    )
    supernet.cuda()

    ckpt = torch.load(args.load_at)
    print(args.load_at)
    supernet.load_state_dict(ckpt)
    supernet.generate_share_alphas()

    alphas = supernet.cells[0].ops_alphas
    print(alphas)
    out_dir = args.save + '{}/eval_out/{}'.format(args.load_at.split('/')[2], args.seed)
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    torch.save(alphas, os.path.join(out_dir, 'alphas.pt'))
    with open(os.path.join(out_dir, 'alphas.txt'), 'w') as f:
        for i in alphas.cpu().detach().numpy():
            for j in i:
                f.write('{:d}'.format(int(j)))
            f.write('\n')

    # Getting subnet according to sample alpha
    subnet = supernet.get_sub_net(alphas)

    init_valid_acc, _ = infer(valid_queue, subnet, criterion)
    print('Initial Valid Acc {:.2f}'.format(init_valid_acc))

    if args.fine_tune:
        if args.cifar100:
            weight_decay = 5e-4
        else:
            weight_decay = 3e-4

        # Fine tuning whole network:
        subnet = supernet.get_sub_net(alphas)
        optimizer = torch.optim.SGD(
            subnet.parameters(),
            args.finetune_lr,
            momentum=args.momentum,
            weight_decay=weight_decay,
        )

        for epoch in range(args.epochs):
            # scheduler.step()
            print('epoch {} lr {:.4f}'.format(epoch, args.finetune_lr))

            train_acc, _ = train(train_queue, subnet, criterion, optimizer)
            print('train_acc {:.2f}'.format(train_acc))

            whole_valid_acc, _ = infer(valid_queue, subnet, criterion)
            print('valid_acc after whole fine-tune {:.2f}'.format(whole_valid_acc))

            fly_whole_valid_acc, _ = infer(valid_queue, subnet, criterion, use_fly_bn=False)
            print('valid_acc after whole fine-tune {:.2f}'.format(fly_whole_valid_acc))

        # Fine-tuning only classifier:
        subnet = supernet.get_sub_net(alphas)
            # Freezing other weights except classifier:
        for name, param in subnet.named_parameters():
            if not 'classifier' in name:
                param.requires_grad_(requires_grad=False)

        optimizer = torch.optim.SGD(
            subnet.classifier.parameters(),
            args.finetune_lr,
            momentum=args.momentum,
            weight_decay=weight_decay,
        )

        for epoch in range(args.epochs):
            # scheduler.step()
            print('epoch {} lr {:.4f}'.format(epoch, args.finetune_lr))

            train_acc, _ = train(train_queue, subnet, criterion, optimizer)
            print('train_acc {:.2f}'.format(train_acc))

            part_valid_acc, _ = infer(valid_queue, subnet, criterion)
            print('valid_acc after fine-tuning classifier {:.2f}'.format(part_valid_acc))

            fly_part_valid_acc, _ = infer(valid_queue, subnet, criterion, use_fly_bn=False)
            print('valid_acc after fine-tuning classifier {:.2f}'.format(fly_part_valid_acc))

        with open(os.path.join(out_dir, 'results.txt'), 'w') as f:
            f.write('-'.join([str(init_valid_acc), str(whole_valid_acc),
                    str(fly_whole_valid_acc), str(part_valid_acc), str(fly_part_valid_acc)]))

    if not args.fine_tune:
        with open(os.path.join(out_dir, 'results.txt'), 'w') as f:
            f.write(str(init_valid_acc))