def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path, is_albert):
    config_path = os.path.abspath(bert_config_file)
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {} with config at {}".format(tf_path, config_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    # Initialise PyTorch model
    if is_albert:
        config = ALBertConfig.from_json_file(bert_config_file)
        print("Building PyTorch model from configuration: {}".format(str(config)))
        model = ALBertForPreTraining(config)
    else:
        config = BertConfig.from_json_file(bert_config_file)
        print("Building PyTorch model from configuration: {}".format(str(config)))
        model = BertForPreTraining(config)

    for name, array in zip(names, arrays):
        name = name.split('/')
        if name[0] == 'global_step':
            continue
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(n in ["adam_v", "adam_m"] for n in name):
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name[-13:] == '_embeddings_2':
            pointer = getattr(pointer, 'weight')
            array = np.transpose(array)
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)

    # Save pytorch-model
    print("Save PyTorch model to {}".format(pytorch_dump_path))
    torch.save(model.state_dict(), pytorch_dump_path)
Exemplo n.º 2
0
    # use some global vars for convenience
    args = parser.parse_args()
    args.checkpoint_dir += ('/epoch{}_batch{}_lr{}_warmup{}_anslen{}/'.format(
        args.train_epochs, args.n_batch, args.lr, args.warmup_rate,
        args.max_ans_length))
    args = utils.check_args(args)
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
    device = torch.device("cuda")
    n_gpu = torch.cuda.device_count()
    print("device %s n_gpu %d" % (device, n_gpu))
    print("device: {} n_gpu: {} 16-bits training: {}".format(
        device, n_gpu, args.float16))

    # load the bert setting
    if 'albert' not in args.bert_config_file:
        bert_config = BertConfig.from_json_file(args.bert_config_file)
    else:
        bert_config = ALBertConfig.from_json_file(args.bert_config_file)

    # load data
    print('loading data...')
    tokenizer = tokenization.BertTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=True)
    assert args.vocab_size == len(tokenizer.vocab)
    if not os.path.exists(args.train_dir):
        json2features(args.train_file, [
            args.train_dir.replace('_features_', '_examples_'), args.train_dir
        ],
                      tokenizer,
                      is_training=True,
                      max_seq_length=bert_config.max_position_embeddings)
Exemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--gpu_ids", default='0,1,2,3,4,5,6,7', type=str)
    parser.add_argument("--model_name", default='albert_xxlarge_google_zh')
    parser.add_argument(
        "--bert_config_file",
        default=
        'check_points/pretrain_models/albert_xxlarge_google_zh_v1121/bert_config.json'
    )
    parser.add_argument(
        "--vocab_file",
        default='check_points/pretrain_models/albert_xlarge_zh/vocab.txt')
    parser.add_argument(
        "--init_checkpoint",
        default=
        'check_points/pretrain_models/albert_xxlarge_google_zh_v1121/pytorch_model.pth'
    )
    parser.add_argument("--input_dir", default='dataset/CHID')
    parser.add_argument("--output_dir", default='check_points/CHID')

    ## Other parameters
    parser.add_argument("--train_file",
                        default='./origin_data/CHID/train.json',
                        type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--train_ans_file",
        default='./origin_data/CHID/train_answer.json',
        type=str,
        help="SQuAD answer for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--predict_file",
        default='./origin_data/CHID/dev.json',
        type=str,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json"
    )
    parser.add_argument(
        "--predict_ans_file",
        default='origin_data/CHID/dev_answer.json',
        type=str,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json"
    )
    parser.add_argument(
        "--max_seq_length",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--max_num_choices",
        default=10,
        type=int,
        help=
        "The maximum number of cadicate answer,  shorter than this will be padded."
    )
    parser.add_argument("--do_train",
                        default=True,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=True,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.06,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
        "of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=422,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--fp16',
        default=True,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()
    args.output_dir = os.path.join(args.output_dir, args.model_name)
    print(args)
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    print(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    if os.path.exists(args.output_dir) == False:
        # raise ValueError("Output directory () already exists and is not empty.")
        os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = BertTokenizer(vocab_file=args.vocab_file,
                              do_lower_case=args.do_lower_case)

    if args.do_train:
        print('ready for train dataset')

        train_example_file = os.path.join(
            args.input_dir,
            'train_examples_{}.pkl'.format(str(args.max_seq_length)))
        train_feature_file = os.path.join(
            args.input_dir,
            'train_features_{}.pkl'.format(str(args.max_seq_length)))

        train_features = generate_input(args.train_file,
                                        args.train_ans_file,
                                        train_example_file,
                                        train_feature_file,
                                        tokenizer,
                                        max_seq_length=args.max_seq_length,
                                        max_num_choices=args.max_num_choices,
                                        is_training=True)

        dev_example_file = os.path.join(
            args.input_dir,
            'dev_examples_{}.pkl'.format(str(args.max_seq_length)))
        dev_feature_file = os.path.join(
            args.input_dir,
            'dev_features_{}.pkl'.format(str(args.max_seq_length)))

        eval_features = generate_input(args.predict_file,
                                       None,
                                       dev_example_file,
                                       dev_feature_file,
                                       tokenizer,
                                       max_seq_length=args.max_seq_length,
                                       max_num_choices=args.max_num_choices,
                                       is_training=False)

        print("train features {}".format(len(train_features)))
        num_train_steps = int(
            len(train_features) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

        print("loaded train dataset")
        print("Num generate examples = {}".format(len(train_features)))
        print("Batch size = {}".format(args.train_batch_size))
        print("Num steps for a epoch = {}".format(num_train_steps))

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_masks = torch.tensor([f.input_masks for f in train_features],
                                       dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_choice_masks = torch.tensor(
            [f.choice_masks for f in train_features], dtype=torch.long)
        all_labels = torch.tensor([f.label for f in train_features],
                                  dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_masks,
                                   all_segment_ids, all_choice_masks,
                                   all_labels)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size,
                                      drop_last=True)

        # Prepare model
        if 'albert' in args.model_name:
            if 'google' in args.model_name:
                bert_config = AlbertConfig.from_json_file(
                    args.bert_config_file)
                model = reset_model(args, bert_config, AlbertForMultipleChoice)
            else:
                bert_config = ALBertConfig.from_json_file(
                    args.bert_config_file)
                model = reset_model(args, bert_config, ALBertForMultipleChoice)
        else:
            bert_config = BertConfig.from_json_file(args.bert_config_file)
            model = reset_model(args, bert_config, BertForMultipleChoice)
        model = model.to(device)
        if n_gpu > 1:
            model = torch.nn.DataParallel(model)

        optimizer = get_optimization(
            model,
            float16=args.fp16,
            learning_rate=args.learning_rate,
            total_steps=num_train_steps,
            schedule='warmup_linear',
            warmup_rate=args.warmup_proportion,
            weight_decay_rate=0.01,
            max_grad_norm=1.0,
            opt_pooler=True)  # multi_choice must update pooler

        global_step = 0
        best_acc = 0
        acc = 0
        for i in range(int(args.num_train_epochs)):
            num_step = 0
            average_loss = 0
            model.train()
            model.zero_grad()  # 等价于optimizer.zero_grad()
            steps_per_epoch = num_train_steps // args.num_train_epochs
            with tqdm(total=int(steps_per_epoch),
                      desc='Epoch %d' % (i + 1)) as pbar:
                for step, batch in enumerate(train_dataloader):
                    if n_gpu == 1:
                        batch = tuple(
                            t.to(device) for t in
                            batch)  # multi-gpu does scattering it-self
                    input_ids, input_masks, segment_ids, choice_masks, labels = batch
                    if step == 0 and i == 0:
                        print('shape of input_ids: {}'.format(input_ids.shape))
                        print('shape of labels: {}'.format(labels.shape))
                    loss = model(input_ids=input_ids,
                                 token_type_ids=segment_ids,
                                 attention_mask=input_masks,
                                 labels=labels)
                    if n_gpu > 1:
                        loss = loss.mean()  # mean() to average on multi-gpu.
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps
                    if args.fp16:
                        optimizer.backward(loss)
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used and handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    else:
                        loss.backward()
                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        optimizer.step()
                        optimizer.zero_grad()
                        global_step += 1

                    average_loss += loss.item()
                    num_step += 1

                    pbar.set_postfix({
                        'loss':
                        '{0:1.5f}'.format(average_loss / (num_step + 1e-5))
                    })
                    pbar.update(1)

            if args.do_predict and (args.local_rank == -1
                                    or torch.distributed.get_rank() == 0):

                print("***** Running predictions *****")
                print("Num split examples = {}".format(len(eval_features)))
                print("Batch size = {}".format(args.predict_batch_size))

                all_example_ids = [f.example_id for f in eval_features]
                all_tags = [f.tag for f in eval_features]
                all_input_ids = torch.tensor(
                    [f.input_ids for f in eval_features], dtype=torch.long)
                all_input_masks = torch.tensor(
                    [f.input_masks for f in eval_features], dtype=torch.long)
                all_segment_ids = torch.tensor(
                    [f.segment_ids for f in eval_features], dtype=torch.long)
                all_choice_masks = torch.tensor(
                    [f.choice_masks for f in eval_features], dtype=torch.long)
                all_example_index = torch.arange(all_input_ids.size(0),
                                                 dtype=torch.long)
                eval_data = TensorDataset(all_input_ids, all_input_masks,
                                          all_segment_ids, all_choice_masks,
                                          all_example_index)
                # Run prediction for full data
                eval_sampler = SequentialSampler(eval_data)
                eval_dataloader = DataLoader(
                    eval_data,
                    sampler=eval_sampler,
                    batch_size=args.predict_batch_size)

                model.eval()
                all_results = []
                print("Start evaluating")
                for input_ids, input_masks, segment_ids, choice_masks, example_indices in tqdm(
                        eval_dataloader, desc="Evaluating", disable=None):
                    if len(all_results) == 0:
                        print('shape of input_ids: {}'.format(input_ids.shape))
                    input_ids = input_ids.to(device)
                    input_masks = input_masks.to(device)
                    segment_ids = segment_ids.to(device)
                    with torch.no_grad():
                        batch_logits = model(input_ids=input_ids,
                                             token_type_ids=segment_ids,
                                             attention_mask=input_masks,
                                             labels=None)
                    for i, example_index in enumerate(example_indices):
                        logits = batch_logits[i].detach().cpu().tolist()
                        eval_feature = eval_features[example_index.item()]
                        unique_id = int(eval_feature.unique_id)
                        all_results.append(
                            RawResult(unique_id=unique_id,
                                      example_id=all_example_ids[unique_id],
                                      tag=all_tags[unique_id],
                                      logit=logits))
                else:
                    print("prediction is over")

                predict_file = 'dev_predictions.json'
                print('decoder raw results')
                tmp_predict_file = os.path.join(args.output_dir,
                                                "raw_predictions.pkl")
                output_prediction_file = os.path.join(args.output_dir,
                                                      predict_file)
                results = get_final_predictions(all_results,
                                                tmp_predict_file,
                                                g=True)
                write_predictions(results, output_prediction_file)
                print('predictions saved to {}'.format(output_prediction_file))

                if args.predict_ans_file:
                    acc = evaluate(args.predict_ans_file,
                                   output_prediction_file)
                    print(f'{args.predict_file} 预测精度:{acc}')

            # Save a epoch trained model
            if not args.do_predict or acc > best_acc:
                best_acc = acc
                output_model_file = os.path.join(args.output_dir,
                                                 "best_checkpoint.bin")
                print('save trained model from {}'.format(output_model_file))
                model_to_save = model.module if hasattr(
                    model, 'module') else model  # Only save the model it-self
                torch.save(model_to_save.state_dict(), output_model_file)
Exemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--gpu_ids", default='0,1,2,3', type=str)
    parser.add_argument("--data_dir", default='origin_data/C3', type=str)
    parser.add_argument("--task_name", default='c3', type=str)
    parser.add_argument(
        "--bert_config_file",  # albert_xxlarge_google_zh_v1121 # roberta_wwm_ext_large
        default=
        'check_points/pretrain_models/albert_xxlarge_google_zh_v1121/bert_config.json',
        type=str)
    parser.add_argument(
        "--vocab_file",
        default='check_points/pretrain_models/google_bert_base/vocab.txt',
        type=str)
    parser.add_argument(
        "--output_dir",
        default='check_points/c3/albert_xxlarge_google_zh_v1121',
        type=str)

    ## Other parameters
    parser.add_argument(
        "--init_checkpoint",
        default=
        'check_points/pretrain_models/albert_xxlarge_google_zh_v1121/pytorch_model.pth',
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=True,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=True,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--schedule",
                        default='warmup_linear',
                        type=str,
                        help='schedule')
    parser.add_argument("--weight_decay_rate",
                        default=0.01,
                        type=float,
                        help='weight_decay_rate')
    parser.add_argument('--clip_norm', type=float, default=1.0)
    parser.add_argument("--num_train_epochs",
                        default=8.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.05,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--float16', type=bool, default=True)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=345,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=4,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument('--setting_file', type=str, default='setting.txt')
    parser.add_argument('--log_file', type=str, default='log.txt')

    args = parser.parse_args()
    args.setting_file = os.path.join(args.output_dir, args.setting_file)
    args.log_file = os.path.join(args.output_dir, args.log_file)
    os.makedirs(args.output_dir, exist_ok=True)
    with open(args.setting_file, 'wt') as opt_file:
        opt_file.write('------------ Options -------------\n')
        print('------------ Options -------------')
        for k in args.__dict__:
            v = args.__dict__[k]
            opt_file.write('%s: %s\n' % (str(k), str(v)))
            print('%s: %s' % (str(k), str(v)))
        opt_file.write('-------------- End ----------------\n')
        print('------------ End -------------')
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids

    if os.path.exists(args.log_file):
        os.remove(args.log_file)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    processor = c3Processor(args.data_dir)
    label_list = processor.get_labels()

    tokenizer = tokenization.BertTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples()
        num_train_steps = int(
            len(train_examples) / n_class / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    if 'albert' in args.bert_config_file:
        if 'google' in args.bert_config_file:
            bert_config = AlbertConfig.from_json_file(args.bert_config_file)
            model = AlbertForMultipleChoice(bert_config, num_choices=n_class)
        else:
            bert_config = ALBertConfig.from_json_file(args.bert_config_file)
            model = ALBertForMultipleChoice(bert_config, num_choices=n_class)
    else:
        bert_config = BertConfig.from_json_file(args.bert_config_file)
        model = BertForMultipleChoice(bert_config, num_choices=n_class)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}"
            .format(args.max_seq_length, bert_config.max_position_embeddings))

    if args.init_checkpoint is not None:
        utils.torch_show_all_params(model)
        utils.torch_init_model(model, args.init_checkpoint)
    if args.float16:
        model.half()
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    optimizer = get_optimization(
        model=model,
        float16=args.float16,
        learning_rate=args.learning_rate,
        total_steps=num_train_steps,
        schedule=args.schedule,
        warmup_rate=args.warmup_proportion,
        max_grad_norm=args.clip_norm,
        weight_decay_rate=args.weight_decay_rate,
        opt_pooler=True)  # multi_choice must update pooler

    global_step = 0
    eval_dataloader = None
    if args.do_eval:
        eval_examples = processor.get_dev_examples()
        feature_dir = os.path.join(
            args.data_dir, 'dev_features{}.pkl'.format(args.max_seq_length))
        if os.path.exists(feature_dir):
            eval_features = pickle.load(open(feature_dir, 'rb'))
        else:
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer)
            with open(feature_dir, 'wb') as w:
                pickle.dump(eval_features, w)

        input_ids = []
        input_mask = []
        segment_ids = []
        label_id = []

        for f in eval_features:
            input_ids.append([])
            input_mask.append([])
            segment_ids.append([])
            for i in range(n_class):
                input_ids[-1].append(f[i].input_ids)
                input_mask[-1].append(f[i].input_mask)
                segment_ids[-1].append(f[i].segment_ids)
            label_id.append(f[0].label_id)

        all_input_ids = torch.tensor(input_ids, dtype=torch.long)
        all_input_mask = torch.tensor(input_mask, dtype=torch.long)
        all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
        all_label_ids = torch.tensor(label_id, dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

    if args.do_train:
        best_accuracy = 0

        feature_dir = os.path.join(
            args.data_dir, 'train_features{}.pkl'.format(args.max_seq_length))
        if os.path.exists(feature_dir):
            train_features = pickle.load(open(feature_dir, 'rb'))
        else:
            train_features = convert_examples_to_features(
                train_examples, label_list, args.max_seq_length, tokenizer)
            with open(feature_dir, 'wb') as w:
                pickle.dump(train_features, w)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        input_ids = []
        input_mask = []
        segment_ids = []
        label_id = []
        for f in train_features:
            input_ids.append([])
            input_mask.append([])
            segment_ids.append([])
            for i in range(n_class):
                input_ids[-1].append(f[i].input_ids)
                input_mask[-1].append(f[i].input_mask)
                segment_ids[-1].append(f[i].segment_ids)
            label_id.append(f[0].label_id)

        all_input_ids = torch.tensor(input_ids, dtype=torch.long)
        all_input_mask = torch.tensor(input_mask, dtype=torch.long)
        all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
        all_label_ids = torch.tensor(label_id, dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size,
                                      drop_last=True)
        steps_per_epoch = int(num_train_steps / args.num_train_epochs)

        for ie in range(int(args.num_train_epochs)):
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            with tqdm(total=int(steps_per_epoch),
                      desc='Epoch %d' % (ie + 1)) as pbar:
                for step, batch in enumerate(train_dataloader):
                    batch = tuple(t.to(device) for t in batch)
                    input_ids, input_mask, segment_ids, label_ids = batch
                    loss = model(input_ids, segment_ids, input_mask, label_ids)
                    if n_gpu > 1:
                        loss = loss.mean()  # mean() to average on multi-gpu.
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps
                    tr_loss += loss.item()

                    if args.float16:
                        optimizer.backward(loss)
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used and handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    else:
                        loss.backward()

                    nb_tr_examples += input_ids.size(0)
                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        optimizer.step(
                        )  # We have accumulated enought gradients
                        model.zero_grad()
                        global_step += 1
                        nb_tr_steps += 1
                        pbar.set_postfix({
                            'loss':
                            '{0:1.5f}'.format(tr_loss / (nb_tr_steps + 1e-5))
                        })
                        pbar.update(1)

            if args.do_eval:
                model.eval()
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0
                logits_all = []
                for input_ids, input_mask, segment_ids, label_ids in tqdm(
                        eval_dataloader):
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        tmp_eval_loss, logits = model(input_ids,
                                                      segment_ids,
                                                      input_mask,
                                                      label_ids,
                                                      return_logits=True)

                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.cpu().numpy()
                    for i in range(len(logits)):
                        logits_all += [logits[i]]

                    tmp_eval_accuracy = accuracy(logits, label_ids.reshape(-1))

                    eval_loss += tmp_eval_loss.mean().item()
                    eval_accuracy += tmp_eval_accuracy

                    nb_eval_examples += input_ids.size(0)
                    nb_eval_steps += 1

                eval_loss = eval_loss / nb_eval_steps
                eval_accuracy = eval_accuracy / nb_eval_examples

                if args.do_train:
                    result = {
                        'eval_loss': eval_loss,
                        'eval_accuracy': eval_accuracy,
                        'global_step': global_step,
                        'loss': tr_loss / nb_tr_steps
                    }
                else:
                    result = {
                        'eval_loss': eval_loss,
                        'eval_accuracy': eval_accuracy
                    }

                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))

                with open(args.log_file, 'a') as aw:
                    aw.write(
                        "-------------------global steps:{}-------------------\n"
                        .format(global_step))
                    aw.write(str(json.dumps(result, indent=2)) + '\n')

                if eval_accuracy >= best_accuracy:
                    torch.save(model.state_dict(),
                               os.path.join(args.output_dir, "model_best.pt"))
                    best_accuracy = eval_accuracy

        model.load_state_dict(
            torch.load(os.path.join(args.output_dir, "model_best.pt")))
        torch.save(model.state_dict(), os.path.join(args.output_dir,
                                                    "model.pt"))

    model.load_state_dict(torch.load(os.path.join(args.output_dir,
                                                  "model.pt")))

    if args.do_eval:
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        logits_all = []
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss, logits = model(input_ids,
                                              segment_ids,
                                              input_mask,
                                              label_ids,
                                              return_logits=True)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.cpu().numpy()
            for i in range(len(logits)):
                logits_all += [logits[i]]

            tmp_eval_accuracy = accuracy(logits, label_ids.reshape(-1))

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}

        output_eval_file = os.path.join(args.output_dir, "results_dev.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
        output_eval_file = os.path.join(args.output_dir, "logits_dev.txt")
        with open(output_eval_file, "w") as f:
            for i in range(len(logits_all)):
                for j in range(len(logits_all[i])):
                    f.write(str(logits_all[i][j]))
                    if j == len(logits_all[i]) - 1:
                        f.write("\n")
                    else:
                        f.write(" ")

        test_examples = processor.get_test_examples()
        feature_dir = os.path.join(
            args.data_dir, 'test_features{}.pkl'.format(args.max_seq_length))
        if os.path.exists(feature_dir):
            test_features = pickle.load(open(feature_dir, 'rb'))
        else:
            test_features = convert_examples_to_features(
                test_examples, label_list, args.max_seq_length, tokenizer)
            with open(feature_dir, 'wb') as w:
                pickle.dump(test_features, w)

        logger.info("***** Running testing *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        input_ids = []
        input_mask = []
        segment_ids = []
        label_id = []

        for f in test_features:
            input_ids.append([])
            input_mask.append([])
            segment_ids.append([])
            for i in range(n_class):
                input_ids[-1].append(f[i].input_ids)
                input_mask[-1].append(f[i].input_mask)
                segment_ids[-1].append(f[i].segment_ids)
            label_id.append(f[0].label_id)

        all_input_ids = torch.tensor(input_ids, dtype=torch.long)
        all_input_mask = torch.tensor(input_mask, dtype=torch.long)
        all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
        all_label_ids = torch.tensor(label_id, dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            test_sampler = SequentialSampler(test_data)
        else:
            test_sampler = DistributedSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        test_loss, test_accuracy = 0, 0
        nb_test_steps, nb_test_examples = 0, 0
        logits_all = []
        for input_ids, input_mask, segment_ids, label_ids in test_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_test_loss, logits = model(input_ids,
                                              segment_ids,
                                              input_mask,
                                              label_ids,
                                              return_logits=True)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            for i in range(len(logits)):
                logits_all += [logits[i]]

            tmp_test_accuracy = accuracy(logits, label_ids.reshape(-1))

            test_loss += tmp_test_loss.mean().item()
            test_accuracy += tmp_test_accuracy

            nb_test_examples += input_ids.size(0)
            nb_test_steps += 1

        test_loss = test_loss / nb_test_steps
        test_accuracy = test_accuracy / nb_test_examples

        result = {'test_loss': test_loss, 'test_accuracy': test_accuracy}

        output_test_file = os.path.join(args.output_dir, "results_test.txt")
        with open(output_test_file, "w") as writer:
            logger.info("***** Test results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
        output_test_file = os.path.join(args.output_dir, "logits_test.txt")
        with open(output_test_file, "w") as f:
            for i in range(len(logits_all)):
                for j in range(len(logits_all[i])):
                    f.write(str(logits_all[i][j]))
                    if j == len(logits_all[i]) - 1:
                        f.write("\n")
                    else:
                        f.write(" ")