def testVariablesSetDevice(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     # Force all Variables to reside on the device.
     with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
       inception.inception_resnet_v2(inputs, num_classes)
     with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
       inception.inception_resnet_v2(inputs, num_classes)
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
       self.assertDeviceEqual(v.device, '/cpu:0')
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
       self.assertDeviceEqual(v.device, '/gpu:0')
 def testTrainEvalWithReuse(self):
   train_batch_size = 5
   eval_batch_size = 2
   height, width = 150, 150
   num_classes = 1000
   with self.test_session() as sess:
     train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
     inception.inception_resnet_v2(train_inputs, num_classes)
     eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
     logits, _ = inception.inception_resnet_v2(eval_inputs,
                                               num_classes,
                                               is_training=False,
                                               reuse=True)
     predictions = tf.argmax(logits, 1)
     sess.run(tf.global_variables_initializer())
     output = sess.run(predictions)
     self.assertEquals(output.shape, (eval_batch_size,))
 def testBuildNoClasses(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = None
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     net, endpoints = inception.inception_resnet_v2(inputs, num_classes)
     self.assertTrue('AuxLogits' not in endpoints)
     self.assertTrue('Logits' not in endpoints)
     self.assertTrue(
         net.op.name.startswith('InceptionResnetV2/Logits/AvgPool'))
     self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1536])
 def testBuildWithoutAuxLogits(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, endpoints = inception.inception_resnet_v2(inputs, num_classes,
                                                       create_aux_logits=False)
     self.assertTrue('AuxLogits' not in endpoints)
     self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
 def testEvaluation(self):
   batch_size = 2
   height, width = 299, 299
   num_classes = 1000
   with self.test_session() as sess:
     eval_inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = inception.inception_resnet_v2(eval_inputs,
                                               num_classes,
                                               is_training=False)
     predictions = tf.argmax(logits, 1)
     sess.run(tf.global_variables_initializer())
     output = sess.run(predictions)
     self.assertEquals(output.shape, (batch_size,))
 def testGlobalPool(self):
   batch_size = 1
   height, width = 330, 400
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, end_points = inception.inception_resnet_v2(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     pre_pool = end_points['Conv2d_7b_1x1']
     self.assertListEqual(pre_pool.get_shape().as_list(),
                          [batch_size, 8, 11, 1536])
 def testUnknownBatchSize(self):
   batch_size = 1
   height, width = 299, 299
   num_classes = 1000
   with self.test_session() as sess:
     inputs = tf.placeholder(tf.float32, (None, height, width, 3))
     logits, _ = inception.inception_resnet_v2(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [None, num_classes])
     images = tf.random_uniform((batch_size, height, width, 3))
     sess.run(tf.global_variables_initializer())
     output = sess.run(logits, {inputs: images.eval()})
     self.assertEquals(output.shape, (batch_size, num_classes))
 def testBuildEndPoints(self):
   batch_size = 5
   height, width = 299, 299
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     _, end_points = inception.inception_resnet_v2(inputs, num_classes)
     self.assertTrue('Logits' in end_points)
     logits = end_points['Logits']
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertTrue('AuxLogits' in end_points)
     aux_logits = end_points['AuxLogits']
     self.assertListEqual(aux_logits.get_shape().as_list(),
                          [batch_size, num_classes])
     pre_pool = end_points['Conv2d_7b_1x1']
     self.assertListEqual(pre_pool.get_shape().as_list(),
                          [batch_size, 8, 8, 1536])
 def testGlobalPoolUnknownImageShape(self):
   batch_size = 1
   height, width = 330, 400
   num_classes = 1000
   with self.test_session() as sess:
     inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
     logits, end_points = inception.inception_resnet_v2(
         inputs, num_classes, create_aux_logits=False)
     self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     pre_pool = end_points['Conv2d_7b_1x1']
     images = tf.random_uniform((batch_size, height, width, 3))
     sess.run(tf.global_variables_initializer())
     logits_out, pre_pool_out = sess.run([logits, pre_pool],
                                         {inputs: images.eval()})
     self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
     self.assertTupleEqual(pre_pool_out.shape, (batch_size, 8, 11, 1536))