Exemplo n.º 1
0
    def model_closure(obj, t, qL, qG, alphaL, P):

        D = obj.parameters['D']()
        g = obj.parameters['g']()
        epw = obj.parameters['epw']()
        rhoL = obj.parameters['rhoL']()
        muL = obj.parameters['muL']()
        rhoG = obj.parameters['rhoG']()
        muG = obj.parameters['muG']()
        tetha = obj.parameters['tetha']()
        tension = obj.parameters['tension']()

        alphaG = 1 - alphaL

        A = Geometry.area(D)

        vL = Hydraulics.velocity(qL, rhoL, alphaL * A)
        vG = Hydraulics.velocity(qG, rhoG, alphaG * A)

        vLS = Hydraulics.velocity(qL, rhoL, A)
        vGS = Hydraulics.velocity(qG, rhoG, A)

        vM = vGS + vLS

        ReL = Dimensionless.reynolds(D, vL, rhoL, muL)
        ReM = Dimensionless.reynolds(D, vM, rhoL, muL)

        _, fDL = Hydraulics.ff_via_churchill(ReL, epw, D)
        _, fDM = Hydraulics.ff_via_churchill(ReM, epw, D)
        fDG = 0.0

        dbmax = (0.725 + 4.15 * (vGS / vM)**0.5) * (tension / rhoL)**(
            3 / 5) * (2 * fDM * vM**3 / D)**(-2 / 5)
        db = (16. * tension / g / (rhoL - rhoG))**0.5
        db = np.fmax(db, dbmax)
        vb = (0.51 * db + 2.14 / db)**0.5
        CDb = 4 / 3 * ((rhoL - rhoG) / rhoL) * g * db / (vb**2)
        fDI = 1.5 * alphaG * rhoL * CDb / db

        perL = np.pi * D * alphaL
        perG = np.pi * D * alphaG
        perI = np.pi * D**2 * alphaG / db

        tauL = Hydraulics.shear_stress(fDL, rhoL, vL)
        tauG = Hydraulics.shear_stress(fDG, rhoG, vG)
        tauI = Hydraulics.shear_stress(fDI, rhoG, vG - vL)

        dPL = 1 / 4. * rhoL * (vG - vL)**2
        dPG = 0
        dPI = 0

        return tauL * perL, tauG * perG, tauI * perI, dPL, dPG, dPI
Exemplo n.º 2
0
    def residue(self, t: float, y: np.ndarray, yp: np.ndarray, par=None):

        D = self.parameters['D']()
        epw = self.parameters['epw']()
        rho = self.parameters['rho']()
        mu = self.parameters['mu']()
        drhodP = self.parameters['drhodP']()
        z = self.parameters['z']()
        g = self.parameters['g']()
        q_lb = self.parameters['q_lb'](t)
        P_ub = self.parameters['P_ub'](t)

        q = self.variables["q"].parse(y)
        dqdt = self.variables["q"].parse(yp)

        P = self.variables["P"].parse(y)
        dPdt = self.variables["P"].parse(yp)

        A = Geometry.area(D)
        per = np.pi * D

        v = Hydraulics.velocity(q, rho, A)

        Re = Dimensionless.reynolds(D, v, rho, mu)

        _, fD = Hydraulics.ff_via_churchill(Re, epw, D)

        tau = Hydraulics.shear_stress(fD, rho, v)

        res_1 = drhodP * dPdt + 1 / A * self.grad_x(q)
        res_2 = dqdt + A * self.grad_x(P) + self.grad_x_hrs(
            q * v, q) + tau * per + rho * g * A * self.grad_x(z)

        eq1 = Equation(res_1, regions=(RegionEnum.OPEN_CLOSED, ))
        eq2 = Equation(res_2, regions=(RegionEnum.CLOSED_OPEN, ))

        bc1 = BoundaryCondition(q,
                                q_lb,
                                kind=BoundaryConditionEnum.DIRICHLET,
                                regions_1=(RegionEnum.LOWER, ))
        bc2 = BoundaryCondition(P,
                                P_ub,
                                kind=BoundaryConditionEnum.DIRICHLET,
                                regions_1=(RegionEnum.UPPER, ))

        eqs = Equations((eq1, eq2, bc1, bc2))

        res = eqs()

        ires = 0

        return res, ires
Exemplo n.º 3
0
    def model_closure(obj, t, qL, qG, alphaL, P):

        D = obj.parameters['D']()
        g = obj.parameters['g']()
        epw = obj.parameters['epw']()
        rhoL = obj.parameters['rhoL']()
        muL = obj.parameters['muL']()
        rhoG = obj.parameters['rhoG']()
        muG = obj.parameters['muG']()
        tetha = obj.parameters['tetha']()

        alphaG = 1-alphaL

        A = Geometry.area(D)
        betha = Geometry.stratified_angle(alphaL)
        #betha = 2 * np.pi * alphaL
        hD = 0.5 * (1 - np.cos(0.5 * betha))
        perL, perG, perI = Geometry.stratified_perimeters(D, betha)

        vL = Hydraulics.velocity(qL, rhoL, alphaL*A)
        vG = Hydraulics.velocity(qG, rhoG, alphaG*A)

        DL = 4. * alphaL * A / perL
        DG = 4. * alphaG * A / (perG + perI)

        ReL = Dimensionless.reynolds(DL, vL, rhoL, muL)
        ReG = Dimensionless.reynolds(DG, vG, rhoG, muG)

        _, fDL = Hydraulics.ff_via_churchill(ReL, epw, DL)
        _, fDG = Hydraulics.ff_via_churchill(ReG, epw, DG)

        tauL = Hydraulics.shear_stress(fDL, rhoL, vL)
        tauG = Hydraulics.shear_stress(fDG, rhoG, vG)
        tauI = Hydraulics.shear_stress(fDG, rhoG, vG-vL)

        zcml = D * (0.5 - 1 / 3 / np.pi / alphaL * np.sin(betha / 2) ** 3)
        zcmg = D * (0.5 + 1 / 3 / np.pi / alphaG * np.sin(betha / 2) ** 3)

        if qL.ndim == 2:
            tetha = np.repeat(np.array([tetha]), qL.shape[1], axis=0).T

        dPLG = ((rhoL - rhoG) * hD * D - rhoL * zcml + rhoG * zcmg) * g * np.cos(tetha)
        dPL = alphaG * dPLG
        dPG = -alphaL * dPLG
        dPI = (alphaL * rhoL * (zcml - hD * D) + alphaG * rhoG * (zcmg - hD * D)) * g * np.cos(tetha)

        return tauL*perL, tauG*perG, tauI*perI, dPL, dPG, dPI
Exemplo n.º 4
0
    def model_closure(obj, t, qL, qG, alphaL, P):

        D = obj.parameters['D']()
        g = obj.parameters['g']()
        epw = obj.parameters['epw']()
        rhoL = obj.parameters['rhoL']()
        muL = obj.parameters['muL']()
        rhoG = obj.parameters['rhoG']()
        muG = obj.parameters['muG']()

        alphaG = 1 - alphaL

        A = Geometry.area(D)

        perG = 0
        perL = np.pi * D
        perI = np.pi * D * alphaG**0.5

        vL = Hydraulics.velocity(qL, rhoL, alphaL * A)
        vG = Hydraulics.velocity(qG, rhoG, alphaG * A)

        DL = 4. * alphaL * A / perL
        DG = 4. * alphaG * A / (perG + perI)

        ReL = Dimensionless.reynolds(DL, vL, rhoL, muL)
        ReG = Dimensionless.reynolds(DG, vG, rhoG, muG)

        _, fDL = Hydraulics.ff_via_churchill(ReL, epw, DL)
        _, fDG = Hydraulics.ff_via_churchill(ReG, epw, DG)

        tauL = Hydraulics.shear_stress(fDL, rhoL, vL)
        tauG = Hydraulics.shear_stress(fDG, rhoG, vG)
        tauI = Hydraulics.shear_stress(fDG, rhoG, vG - vL)

        dPL = 0.0
        dPG = 0.0
        dPI = 0.0

        return tauL * perL, tauG * perG, tauI * perI, dPL, dPG, dPI
Exemplo n.º 5
0
    def residue(self, t: float, y: np.ndarray, yp: np.ndarray, par=None):

        #print(int(t*100)/100)

        D = self.parameters['D']()
        rhoL = self.parameters['rhoL']()
        drhoLdP = self.parameters['drhoLdP']()
        rhoG = self.parameters['rhoG']()
        drhoGdP = self.parameters['drhoGdP']()
        tetha = self.parameters['tetha']()
        Pr = self.parameters['Pr']()
        g = self.parameters['g']()

        if y.ndim == 2:
            tetha = np.repeat(np.array([tetha]), y.shape[1], axis=0).T

        qL_lb = self.parameters['qL_lb'](t)
        qG_lb = self.parameters['qG_lb'](t)
        P_ub = self.parameters['P_ub'](t)

        qL = self.variables["qL"].parse(y)
        dqLdt = self.variables["qL"].parse(yp)

        qG = self.variables["qG"].parse(y)
        dqGdt = self.variables["qG"].parse(yp)

        alphaL = self.variables["alphaL"].parse(y)
        dalphaLdt = self.variables["alphaL"].parse(yp)

        P = self.variables["P"].parse(y) * Pr
        dPdt = self.variables["P"].parse(yp) * Pr

        #alphaL = np.fmin(np.fmax(alphaL, 1e-6),1 -1e-6)

        bc1 = BoundaryCondition(qL,
                                qL_lb,
                                kind=BoundaryConditionEnum.DIRICHLET,
                                regions_1=(RegionEnum.LOWER, ))
        bc2 = BoundaryCondition(qG,
                                qG_lb,
                                kind=BoundaryConditionEnum.DIRICHLET,
                                regions_1=(RegionEnum.LOWER, ))
        bc3 = BoundaryCondition(P / Pr,
                                P_ub / Pr,
                                kind=BoundaryConditionEnum.DIRICHLET,
                                regions_1=(RegionEnum.UPPER, ))
        bc4 = BoundaryCondition(alphaL,
                                0.0,
                                kind=BoundaryConditionEnum.NEUMANN,
                                regions_1=(RegionEnum.LOWER, ),
                                regions_2=(RegionEnum.LOWER_PLUS_ONE, ))

        alphaG = 1 - alphaL
        dalphaGdt = -dalphaLdt

        A = Geometry.area(D)

        vL = Hydraulics.velocity(qL, rhoL, alphaL * A)
        vG = Hydraulics.velocity(qG, rhoG, alphaG * A)

        gammaL, gammaG, gammaI, dPL, dPG, dPI = self.model_closure(
            self, t, qL, qG, alphaL, P)

        dqLdx = self.grad_x(qL)
        dqGdx = self.grad_x(qG)

        cM = (alphaL / rhoL * drhoLdP + alphaG / rhoG * drhoGdP)
        res_1 = dPdt + (dqLdx / rhoL + dqGdx / rhoG) / A / cM
        res_2 = dalphaLdt + (
            1 - 1 / cM * alphaL / rhoL * drhoLdP
        ) / A / rhoL * dqLdx - 1 / A / rhoG / cM * alphaL / rhoL * drhoLdP * dqGdx

        res_3 = dqLdt + A * (dPL - rhoL * vL**2) * self.grad_x(
            alphaL) + A * alphaL * (1 - drhoLdP * vL**2) * self.grad_x(
                P) + A * alphaL * self.grad_x(dPL) + 2 * vL * self.grad_x_hrs(
                    qL, qL) + gammaL - gammaI + alphaL * rhoL * g * A * np.sin(
                        tetha)
        res_4 = dqGdt + A * (dPG - rhoG * vG**2) * self.grad_x(
            alphaG) + A * alphaG * (1 - drhoGdP * vG**2) * self.grad_x(
                P) + A * alphaG * self.grad_x(dPG) + 2 * vG * self.grad_x_hrs(
                    qG, qG) + gammaG + gammaI + alphaG * rhoG * g * A * np.sin(
                        tetha)
        #res_3 = dqLdt + A * alphaL*(1 - drhoLdP * vL**2) * self.grad_x(P + dPL) + 2*vL * self.grad_x_hrs(qL, qL) + gammaL - gammaI + alphaL * rhoL * g * A * np.sin(tetha)
        #res_4 = dqGdt + A * alphaG*(1 - drhoGdP * vG**2) * self.grad_x(P + dPG) + 2*vG * self.grad_x_hrs(qG, qG) + gammaG + gammaI + alphaG * rhoG * g * A * np.sin(tetha)

        eq1 = Equation(res_1, regions=(RegionEnum.CLOSED_OPEN, ))
        eq2 = Equation(res_2, regions=(RegionEnum.OPEN_CLOSED, ))
        eq3 = Equation(res_3, regions=(RegionEnum.OPEN_CLOSED, ))
        eq4 = Equation(res_4, regions=(RegionEnum.OPEN_CLOSED, ))

        eqs = Equations((
            eq1,
            eq2,
            eq3,
            eq4,
            bc1,
            bc2,
            bc3,
            bc4,
        ))

        res = eqs()

        ires = 0

        return res, ires
    def model_closure(obj, t, qL, qG, alphaL, P):

        D = obj.parameters['D']()
        g = obj.parameters['g']()
        epw = obj.parameters['epw']()
        rhoL = obj.parameters['rhoL']()
        muL = obj.parameters['muL']()
        rhoG = obj.parameters['rhoG']()
        muG = obj.parameters['muG']()
        tetha = obj.parameters['tetha']()
        tension = obj.parameters['tension']()

        alphaG = 1 - alphaL

        A = Geometry.area(D)

        vL = Hydraulics.velocity(qL, rhoL, alphaL * A)
        vG = Hydraulics.velocity(qG, rhoG, alphaG * A)

        vLS = Hydraulics.velocity(qL, rhoL, A)
        vGS = Hydraulics.velocity(qG, rhoG, A)

        vM = vGS + vLS

        ReL = Dimensionless.reynolds(D, vL, rhoL, muL)
        ReLS = Dimensionless.reynolds(D, vLS, rhoL, muL)
        ReM = Dimensionless.reynolds(D, vM, rhoL, muL)

        ffL, fDL = Hydraulics.ff_via_churchill(ReL, epw, D)
        ffLS, fDLS = Hydraulics.ff_via_churchill(ReLS, epw, D)
        ffM, fDM = Hydraulics.ff_via_churchill(ReM, epw, D)

        # Gas Fraction in Slug
        alphaS = 0.058 * (2 * (0.4 * tension / g / (rhoL - rhoG))**0.5 *
                          (2. * ffM / D * vM**3)**(2 / 5) *
                          (rhoL / tension)**(3 / 5) - 0.725)**2
        alphaS = np.fmax(alphaS, np.zeros_like(alphaS))
        alphaS = np.fmin(alphaS, np.ones_like(alphaS) - 0.48)
        Rs = 1 - alphaS

        # Slug length
        if D > 0.038:
            ls = np.exp(-3.287 + 4.589 * (np.log(D / 0.0254))**0.5)
        else:
            ls = 18.1 * D

        # Slug frequency
        Eo = np.sqrt(9.81 * D**2. * (rhoL - rhoG) / tension)
        Nf = ((D**1.5) * (rhoL * (rhoL - rhoG) * g)**0.5) / muL
        n = Nf / (260 + 0.85 * Nf)
        wS = vGS / D * (0.0323 / 2. * vLS / vGS * ((rhoL /
                                                    (rhoL - rhoG))**0.5) *
                        (fDLS**-0.5) / (Eo**0.2))**n

        # Slug Translational Velocity
        C = 1.2
        gD = (9.81 * D)**0.5
        vD = 0.35 * gD * np.sin(tetha) + 0.54 * gD * np.cos(tetha)
        vT = C * vM + vD

        # Slug region lengths
        lu = vT / wS
        ls = np.fmin(ls, lu)
        lf = lu - ls
        lf = np.fmax(lf, ls * 1e-3)
        lu = lf + ls

        # Taylor Bubble holdup
        alphaF = lu / lf * alphaG - ls / lf * alphaS
        alphaF = np.fmax(1e-6, alphaF)
        alphaF = min(1 - 1e-6, alphaF)
        Rf = 1 - alphaF

        # Slug Speeds
        uL = (vLS + vT * (alphaG - alphaS)) / Rs
        ub = (vGS - vT * (alphaG - alphaS)) / alphaS

        # Taylor Bubble Speed
        uf = vT - (vT - uL) * Rs / Rf
        uG = vT - (vT - ub) * alphaS / alphaF

        gammaL1, gammaG1, gammaI1, dPL1, dPG1, dPI1 = StratifiedClosure.model_closure(
            obj, qL * uL / vL, qG * ub / vG, Rf, P)
        gammaL2, gammaG2, gammaI2, dPL2, dPG2, dPI2 = BubbleClosure.model_closure(
            obj, qL * uf / vL, qG * uG / vG, Rs, P)

        gammaL = (gammaL1 * ls + gammaL2 * lf) / lu
        gammaG = (gammaG1 * ls + gammaG2 * lf) / lu
        gammaI = (gammaI1 * ls + gammaI2 * lf) / lu
        dPL = (dPL1 * ls + dPL2 * lf) / lu
        dPG = (dPG1 * ls + dPG2 * lf) / lu
        dPI = (dPI1 * ls + dPI2 * lf) / lu

        return gammaL, gammaG, gammaI, dPL, dPG, dPI