Exemplo n.º 1
0
def train(model, dataset, optim, loss_fn, epochs, device, lr):
    metrics = train_model(
        dl_train=dataset.param.train(),
        dl_val=dataset.param.test(),
        model=model.param(),
        opt_func=partial(optim.param, lr=lr),
        loss_fn=loss_fn.param(),
        epochs=epochs,
        device=device,
        show_progress=False,
    )
    rows = list(
        map(
            lambda r: {
                "model_name": model.name,
                "optim": optim.name,
                "loss_fn": loss_fn.name,
                "dataset": dataset.name,
                "lr": lr,
                "epoch": r["epoch"],
                "train_loss": r["train_loss"],
                "val_loss": r["val_loss"],
                "train_loss_avg": r["train_loss_avg"],
                "val_loss_avg": r["val_loss_avg"],
                "pct_error_avg": r["pct_error_avg"],
            },
            metrics,
        )
    )
    return pd.DataFrame(rows)
Exemplo n.º 2
0
 def test_on_positively_correlated_data(self):
     test_argument = np.array([[1.0, 4.0], [2.0, 4.0],
                               [3.0, 9.0], [4.0, 10.0],
                               [5.0, 7.0], [6.0, 13.0],
                               ]
                              )
     actual_slope, actual_intercept = train_model(test_argument)
     assert actual_slope > 0, "Expected slope: > 0, Actual slope: {0}".format(actual_slope)
Exemplo n.º 3
0
 def test_on_linear_data(self):
     test_argument = np.array([[1.0, 3.0], [2.0, 5.0], [3.0, 7.0]])
     expected_slope = 2.0
     expected_intercept = 1.0
     actual_slope, actual_intercept = train_model(test_argument)
     slope_message = ("train_model({0}) should return slope {1}, "
                      "but it actually returned slope {2}".format(
                          test_argument, expected_slope, actual_slope))
     intercept_message = ("train_model({0}) should return intercept {1}, "
                          "but it actually returned intercept {2}".format(
                              test_argument, expected_intercept,
                              actual_intercept))
     assert actual_slope == pytest.approx(expected_slope), slope_message
     assert actual_intercept == pytest.approx(
         expected_intercept), intercept_message
Exemplo n.º 4
0
 def train(self):
     start_time = time.time()
     trained_model, acc = train_model(self.loaders,
                                      self.model,
                                      self.loss_fn,
                                      self.activated_features,
                                      self.acc_fn,
                                      self.optimizer,
                                      self.scheduler,
                                      self.epochs,
                                      name=self.name,
                                      classOfInterest=self.classOfInterest)
     logging.info('Training time: {:10f} minutes'.format(
         (time.time() - start_time) / 60))
     return acc
Exemplo n.º 5
0
def main():
    paths = setup_paths()
    raw_data_path = paths.get("raw_data_path") + "train.csv"

    # get raw data, from /datasets/
    df = load_data(raw_data_path)

    # deal with cleaning/transforming raw data into the correct types
    df = preprocess_data(df)

    # building the relevant features set
    X, y, features = extract_features(df)
    X_train, X_eval, y_train, y_eval = split_train_test(X, y)

    model = train_model(X_train, y_train, features)
    evaluate_model(model, X_eval, y_eval)
def main():
    parser = ArgumentParser()
    action_parser = parser.add_subparsers(title="actions",
                                          dest="action",
                                          required=True,
                                          help="select action to execute")

    # args for preprocessing
    preprocess_parser = action_parser.add_parser("preprocess",
                                                 help="preprocess data")
    preprocess_parser.add_argument(
        "-r",
        "--root-dir",
        dest="root_dir",
        required=True,
        help="root directory of the common voice dataset")

    # args for feature extraction
    feature_extractor_parser = action_parser.add_parser(
        "feature_extractor", help="feature extractor")
    feature_extractor_parser.add_argument(
        "-r",
        "--root-dir",
        dest="root_dir",
        required=True,
        help="root directory of the common voice dataset")

    # args for training
    training_parser = action_parser.add_parser("train", help="Train the model")
    training_parser.add_argument(
        "-r",
        "--root-dir",
        dest="root_dir",
        required=True,
        help="root directory of the common voice dataset")
    training_parser.add_argument(
        "-m",
        "--model-name",
        dest="model_key",
        required=True,
        help="key to determine the model to be trained")

    # args for testing
    test_parser = action_parser.add_parser("test", help="Test the model")
    test_parser.add_argument("-r",
                             "--root-dir",
                             dest="root_dir",
                             required=True,
                             help="root directory of the common voice dataset")
    test_parser.add_argument("-m",
                             "--model-name",
                             dest="model_key",
                             required=True,
                             help="key to determine the model to be tested")
    test_parser.add_argument("-c",
                             "--checkpoint-dir",
                             dest="checkpoint_path",
                             required=True,
                             help="root directory of the saved models")

    # args for inference
    inference_parser = action_parser.add_parser(
        "inference", help="Run inference on the model")
    inference_parser.add_argument("-r",
                                  "--root-dir",
                                  dest="root_dir",
                                  required=True,
                                  help="root directory of the audio files")
    inference_parser.add_argument("-m",
                                  "--model-path",
                                  dest="model_path",
                                  required=True,
                                  help="path of the model")

    action, args = clean_args(parser.parse_args())

    if action == 'preprocess':
        preprocess(**args)
    elif action == 'feature_extractor':
        extract_features(**args)
    elif action == 'train':
        train_model(**args)
    elif action == 'test':
        test_model(**args)
    elif action == 'inference':
        inference(**args)
Exemplo n.º 7
0
    # this class wieghts have better accuracy than the one computed with sklearn
    class_weight = [1., 1.5]

    tokenized, key_word_map = pipeline.fit_transform(loader.sms_data)

    model = build_convolutional_model(filters=32,
                                      kernel_size=3,
                                      padding="valid",
                                      strides=1,
                                      data_format=None,
                                      classes=2,
                                      layers=3,
                                      fc=True,
                                      fc_dropout=0.5,
                                      pooling='max',
                                      pool_size=2,
                                      conv_dropout=False)

    model = train_model(
        model=model,
        X=tokenized,
        y=loader.labels,
        save_model=args.save,
        model_path='model_conv_drop_false_15_new_data_1.json',
        weights_path='model_weights_conv_drop_false_15_new_data_1.h5',
        epochs=4,
        batch_size=16,
        class_weight=class_weight,
        shuffle_data=True)
Exemplo n.º 8
0
from utils.dataloader import get_data
from models.crnn import CRNN
from models.res_lstm import ResidualLSTM, Resblock
from models import train
import torch

train_data, test_data = get_data()
model = ResidualLSTM(Resblock, [2])
if torch.cuda.is_available():
    device = torch.device('cuda:0')
else:
    device = torch.device('cpu')
model.to(device)
train.train_model(model, train_data)
torch.save
train.test_model(model, test_data)