Exemplo n.º 1
0
def main(_):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        model = UNet(args.experiment_dir,
                     batch_size=args.batch_size,
                     experiment_id=args.experiment_id,
                     input_width=args.image_size,
                     output_width=args.image_size,
                     embedding_num=args.embedding_num,
                     embedding_dim=args.embedding_dim,
                     L1_penalty=args.L1_penalty)
        model.register_session(sess)
        if args.flip_labels:
            model.build_model(is_training=True,
                              inst_norm=args.inst_norm,
                              no_target_source=True)
        else:
            model.build_model(is_training=True, inst_norm=args.inst_norm)
        fine_tune_list = None
        if args.fine_tune:
            ids = args.fine_tune.split(",")
            fine_tune_list = set([int(i) for i in ids])
        model.train(lr=args.lr,
                    epoch=args.epoch,
                    resume=args.resume,
                    schedule=args.schedule,
                    freeze_encoder=args.freeze_encoder,
                    fine_tune=fine_tune_list,
                    sample_steps=args.sample_steps,
                    checkpoint_steps=args.checkpoint_steps,
                    flip_labels=args.flip_labels)
Exemplo n.º 2
0
def load_finetuned_model(args, baseline_model):
    """

    :param args:
    :param baseline_model:
    :return:
    """
    # augment_net = Net(0, 0.0, 32, 3, 0.0, num_classes=32**2 * 3, do_res=True)
    augment_net = UNet(in_channels=3, n_classes=3, depth=1, wf=2, padding=True, batch_norm=False,
                       do_noise_channel=True,
                       up_mode='upsample', use_identity_residual=True)  # TODO(PV): Initialize UNet properly
    # TODO (JON): DEPTH 1 WORKED WELL.  Changed upconv to upsample.  Use a wf of 2.

    # This ResNet outputs scalar weights to be applied element-wise to the per-example losses
    from models.simple_models import CNN, Net
    imsize, in_channel, num_classes = 32, 3, 10
    reweighting_net = Net(0, 0.0, imsize, in_channel, 0.0, num_classes=1)
    #resnet_cifar.resnet20(num_classes=1)

    if args.load_finetune_checkpoint:
        checkpoint = torch.load(args.load_finetune_checkpoint)
        baseline_model.load_state_dict(checkpoint['elementary_model_state_dict'])
        augment_net.load_state_dict(checkpoint['augment_model_state_dict'])
        try:
            reweighting_net.load_state_dict(checkpoint['reweighting_model_state_dict'])
        except KeyError:
            pass

    augment_net, reweighting_net, baseline_model = augment_net.cuda(), reweighting_net.cuda(), baseline_model.cuda()
    augment_net.train(), reweighting_net.train(), baseline_model.train()
    return augment_net, reweighting_net, baseline_model
Exemplo n.º 3
0
class EventGANBase(object):
    def __init__(self, options):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.generator = UNet(num_input_channels=2*options.n_image_channels,
                              num_output_channels=options.n_time_bins * 2,
                              skip_type='concat',
                              activation='relu',
                              num_encoders=4,
                              base_num_channels=32,
                              num_residual_blocks=2,
                              norm='BN',
                              use_upsample_conv=True,
                              with_activation=True,
                              sn=options.sn,
                              multi=False)
        latest_checkpoint = get_latest_checkpoint(options.checkpoint_dir)
        checkpoint = torch.load(latest_checkpoint)
        self.generator.load_state_dict(checkpoint["gen"])
        self.generator.to(self.device)
        
    def forward(self, images, is_train=False):
        if len(images.shape) == 3:
            images = images[None, ...]
        assert len(images.shape) == 4 and images.shape[1] == 2, \
            "Input images must be either 2xHxW or Bx2xHxW."
        if not is_train:
            with torch.no_grad():
                self.generator.eval()
                event_volume = self.generator(images)
            self.generator.train()
        else:
            event_volume = self.generator(images)

        return event_volume
Exemplo n.º 4
0
    def load_finetuned_model(self, baseline_model):
        """
        Loads the augmentation net, sample reweighting net, and baseline model
        Note: sets all these models to train mode
        """
        # augment_net = Net(0, 0.0, 32, 3, 0.0, num_classes=32**2 * 3, do_res=True)
        if self.args.dataset == DATASET_MNIST:
            imsize, in_channel, num_classes = 28, 1, 10
        else:
            imsize, in_channel, num_classes = 32, 3, 10

        augment_net = UNet(
            in_channels=in_channel,
            n_classes=in_channel,
            depth=2,
            wf=3,
            padding=True,
            batch_norm=False,
            do_noise_channel=True,
            up_mode='upconv',
            use_identity_residual=True)  # TODO(PV): Initialize UNet properly
        # TODO (JON): DEPTH 1 WORKED WELL.  Changed upconv to upsample.  Use a wf of 2.

        # This ResNet outputs scalar weights to be applied element-wise to the per-example losses
        reweighting_net = Net(1, 0.0, imsize, in_channel, 0.0, num_classes=1)
        # resnet_cifar.resnet20(num_classes=1)

        if self.args.load_finetune_checkpoint:
            checkpoint = torch.load(self.args.load_finetune_checkpoint)
            # temp_baseline_model = baseline_model
            # baseline_model.load_state_dict(checkpoint['elementary_model_state_dict'])
            if 'weight_decay' in checkpoint:
                baseline_model.weight_decay = checkpoint['weight_decay']
            # baseline_model.weight_decay = temp_baseline_model.weight_decay
            # baseline_model.load_state_dict(checkpoint['elementary_model_state_dict'])
            augment_net.load_state_dict(checkpoint['augment_model_state_dict'])
            try:
                reweighting_net.load_state_dict(
                    checkpoint['reweighting_model_state_dict'])
            except KeyError:
                pass

        augment_net, reweighting_net, baseline_model = augment_net.to(
            self.device), reweighting_net.to(self.device), baseline_model.to(
                self.device)
        augment_net.train(), reweighting_net.train(), baseline_model.train()
        return augment_net, reweighting_net, baseline_model
Exemplo n.º 5
0
def train():
    # Init data
    train_dataset, val_dataset = prepare_datasets()
    train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=10, shuffle=True)
    loaders = dict(train=train_loader, val=val_loader)

    # Init Model
    model = UNet().cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, amsgrad=True)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer,
                                                       gamma=0.984)
    loss_fn = nn.BCELoss()

    epochs = 500
    for epoch in range(epochs):
        for phase in 'train val'.split():
            if phase == 'train':
                model = model.train()
                torch.set_grad_enabled(True)

            else:
                model = model.eval()
                torch.set_grad_enabled(False)

            loader = loaders[phase]
            epoch_losses = dict(train=[], val=[])
            running_loss = []

            for batch in loader:
                imgs, masks = batch
                imgs = imgs.cuda()
                masks = masks.cuda()

                outputs = model(imgs)
                loss = loss_fn(outputs, masks)

                running_loss.append(loss.item())

                if phase == 'train':
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()

            # End of Epoch
            print(f'{epoch}) {phase} loss: {np.mean(running_loss)}')
            visualize_results(loader, model, epoch, phase)

            epoch_losses[phase].append(np.mean(running_loss))
            tensorboard(epoch_losses[phase], phase)

            if phase == 'train':
                scheduler.step()
Exemplo n.º 6
0
class Noise2Noise(object):
    """Implementation of Noise2Noise from Lehtinen et al. (2018)."""

    def __init__(self, params, trainable):
        """Initializes model."""

        self.p = params
        self.trainable = trainable
        self._compile()  #初始化模型


    def _compile(self):
        """
        Compiles model (architecture, loss function, optimizers, etc.).
        初始化 网络、损失函数、优化器等
        """

        print('Noise2Noise: Learning Image Restoration without Clean Data (Lethinen et al., 2018)')

        # Model (3x3=9 channels for Monte Carlo since it uses 3 HDR buffers)  已删除蒙特卡洛相关代码
        if self.p.noise_type == 'mc':
            self.is_mc = True
            self.model = UNet(in_channels=9)
        else:
            self.is_mc = False
            self.model = UNet(in_channels=3)

        # Set optimizer and loss, if in training mode
        # 如果 为训练,则初始化优化器和损失
        if self.trainable:
            self.optim = Adam(self.model.parameters(),
                              lr=self.p.learning_rate,
                              betas=self.p.adam[:2],
                              eps=self.p.adam[2])

            # Learning rate adjustment
            self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optim,
                patience=self.p.nb_epochs/4, factor=0.5, verbose=True)

            # Loss function
            if self.p.loss == 'hdr':
                assert self.is_mc, 'Using HDR loss on non Monte Carlo images'
                self.loss = HDRLoss()
            elif self.p.loss == 'l2':
                self.loss = nn.MSELoss()
            else:
                self.loss = nn.L1Loss()

        # CUDA support
        self.use_cuda = torch.cuda.is_available() and self.p.cuda
        if self.use_cuda:
            self.model = self.model.cuda()
            if self.trainable:
                self.loss = self.loss.cuda()


    def _print_params(self):
        """Formats parameters to print when training."""

        print('Training parameters: ')
        self.p.cuda = self.use_cuda
        param_dict = vars(self.p)
        pretty = lambda x: x.replace('_', ' ').capitalize()
        print('\n'.join('  {} = {}'.format(pretty(k), str(v)) for k, v in param_dict.items()))
        print()


    def save_model(self, epoch, stats, first=False):
        """Saves model to files; can be overwritten at every epoch to save disk space."""

        # Create directory for model checkpoints, if nonexistent
        if first:
            if self.p.clean_targets:
                ckpt_dir_name = f'{datetime.now():{self.p.noise_type}-clean-%H%M}'
            else:
                ckpt_dir_name = f'{datetime.now():{self.p.noise_type}-%H%M}'
            if self.p.ckpt_overwrite:
                if self.p.clean_targets:
                    ckpt_dir_name = f'{self.p.noise_type}-clean'
                else:
                    ckpt_dir_name = self.p.noise_type

            self.ckpt_dir = os.path.join(self.p.ckpt_save_path, ckpt_dir_name)
            if not os.path.isdir(self.p.ckpt_save_path):
                os.mkdir(self.p.ckpt_save_path)
            if not os.path.isdir(self.ckpt_dir):
                os.mkdir(self.ckpt_dir)

        # Save checkpoint dictionary
        if self.p.ckpt_overwrite:
            fname_unet = '{}/n2n-{}.pt'.format(self.ckpt_dir, self.p.noise_type)
        else:
            valid_loss = stats['valid_loss'][epoch]
            fname_unet = '{}/n2n-epoch{}-{:>1.5f}.pt'.format(self.ckpt_dir, epoch + 1, valid_loss)
        print('Saving checkpoint to: {}\n'.format(fname_unet))
        torch.save(self.model.state_dict(), fname_unet)

        # Save stats to JSON
        fname_dict = '{}/n2n-stats.json'.format(self.ckpt_dir)
        with open(fname_dict, 'w') as fp:
            json.dump(stats, fp, indent=2)


    def load_model(self, ckpt_fname):
        """Loads model from checkpoint file."""

        print('Loading checkpoint from: {}'.format(ckpt_fname))
        if self.use_cuda:
            self.model.load_state_dict(torch.load(ckpt_fname))
        else:
            self.model.load_state_dict(torch.load(ckpt_fname, map_location='cpu'))


    def _on_epoch_end(self, stats, train_loss, epoch, epoch_start, valid_loader):
        """Tracks and saves starts after each epoch."""

        # Evaluate model on validation set
        print('\rTesting model on validation set... ', end='')
        epoch_time = time_elapsed_since(epoch_start)[0]
        valid_loss, valid_time, valid_psnr = self.eval(valid_loader)
        show_on_epoch_end(epoch_time, valid_time, valid_loss, valid_psnr)

        # Decrease learning rate if plateau
        self.scheduler.step(valid_loss)

        # Save checkpoint
        stats['train_loss'].append(train_loss)
        stats['valid_loss'].append(valid_loss)
        stats['valid_psnr'].append(valid_psnr)
        self.save_model(epoch, stats, epoch == 0)




    def test(self, test_loader, show=1):
        """Evaluates denoiser on test set."""

        self.model.train(False)

        source_imgs = []
        denoised_imgs = []
        clean_imgs = []

        # Create directory for denoised images
        denoised_dir = os.path.dirname(self.p.data)
        save_path = os.path.join(denoised_dir, 'denoised')
        if not os.path.isdir(save_path):
            os.mkdir(save_path)

        for batch_idx, (source, target) in enumerate(test_loader):
            # Only do first <show> images
            if show == 0 or batch_idx >= show:
                break

            source_imgs.append(source)
            clean_imgs.append(target)

            if self.use_cuda:
                source = source.cuda()

            # Denoise
            denoised_img = self.model(source).detach()
            denoised_imgs.append(denoised_img)

        # Squeeze tensors
        source_imgs = [t.squeeze(0) for t in source_imgs]
        denoised_imgs = [t.squeeze(0) for t in denoised_imgs]
        clean_imgs = [t.squeeze(0) for t in clean_imgs]

        # Create montage and save images
        print('Saving images and montages to: {}'.format(save_path))
        for i in range(len(source_imgs)):
            img_name = test_loader.dataset.imgs[i]
            create_montage(img_name, self.p.noise_type, save_path, source_imgs[i], denoised_imgs[i], clean_imgs[i], show)


    def eval(self, valid_loader):
        """Evaluates denoiser on validation set."""

        self.model.train(False)

        valid_start = datetime.now()
        loss_meter = AvgMeter()
        psnr_meter = AvgMeter()

        for batch_idx, (source, target) in enumerate(valid_loader):
            if self.use_cuda:
                source = source.cuda()
                target = target.cuda()

            # Denoise
            source_denoised = self.model(source)

            # Update loss
            loss = self.loss(source_denoised, target)
            loss_meter.update(loss.item())

            # Compute PSRN
            if self.is_mc:
                source_denoised = reinhard_tonemap(source_denoised)
            # TODO: Find a way to offload to GPU, and deal with uneven batch sizes
            for i in range(self.p.batch_size):
                source_denoised = source_denoised.cpu()
                target = target.cpu()
                psnr_meter.update(psnr(source_denoised[i], target[i]).item())

        valid_loss = loss_meter.avg
        valid_time = time_elapsed_since(valid_start)[0]
        psnr_avg = psnr_meter.avg

        return valid_loss, valid_time, psnr_avg


    def train(self, train_loader, valid_loader):
        """Trains denoiser on training set."""

        self.model.train(True)

        self._print_params()
        num_batches = len(train_loader)
        assert num_batches % self.p.report_interval == 0, 'Report interval must divide total number of batches'

        # Dictionaries of tracked stats
        stats = {'noise_type': self.p.noise_type,
                 'noise_param': self.p.noise_param,
                 'train_loss': [],
                 'valid_loss': [],
                 'valid_psnr': []}

        # Main training loop
        train_start = datetime.now()
        for epoch in range(self.p.nb_epochs):
            print('EPOCH {:d} / {:d}'.format(epoch + 1, self.p.nb_epochs))

            # Some stats trackers
            epoch_start = datetime.now()
            train_loss_meter = AvgMeter()
            loss_meter = AvgMeter()
            time_meter = AvgMeter()

            # Minibatch SGD
            for batch_idx, (source, target) in enumerate(train_loader):
                batch_start = datetime.now()
                progress_bar(batch_idx, num_batches, self.p.report_interval, loss_meter.val)

                if self.use_cuda:
                    source = source.cuda()
                    target = target.cuda()

                # Denoise image
                source_denoised = self.model(source)

                loss = self.loss(source_denoised, target)
                loss_meter.update(loss.item())

                # Zero gradients, perform a backward pass, and update the weights
                self.optim.zero_grad()
                loss.backward()
                self.optim.step()

                # Report/update statistics
                time_meter.update(time_elapsed_since(batch_start)[1])
                if (batch_idx + 1) % self.p.report_interval == 0 and batch_idx:
                    show_on_report(batch_idx, num_batches, loss_meter.avg, time_meter.avg)
                    train_loss_meter.update(loss_meter.avg)
                    loss_meter.reset()
                    time_meter.reset()

            # Epoch end, save and reset tracker
            self._on_epoch_end(stats, train_loss_meter.avg, epoch, epoch_start, valid_loader)
            train_loss_meter.reset()

        train_elapsed = time_elapsed_since(train_start)[0]
        print('Training done! Total elapsed time: {}\n'.format(train_elapsed))
Exemplo n.º 7
0
def train(args):
    '''
    -------------------------Hyperparameters--------------------------
    '''
    EPOCHS = args.epochs
    START = 0  # could enter a checkpoint start epoch
    ITER = args.iterations  # per epoch
    LR = args.lr
    MOM = args.momentum
    # LOGInterval = args.log_interval
    BATCHSIZE = args.batch_size
    TEST_BATCHSIZE = args.test_batch_size
    NUMBER_OF_WORKERS = args.workers
    DATA_FOLDER = args.data
    TESTSET_FOLDER = args.testset
    ROOT = args.run
    WEIGHT_DIR = os.path.join(ROOT, "weights")
    CUSTOM_LOG_DIR = os.path.join(ROOT, "additionalLOGS")
    CHECKPOINT = os.path.join(WEIGHT_DIR,
                              str(args.model) + str(args.name) + ".pt")
    useTensorboard = args.tb

    # check existance of data
    if not os.path.isdir(DATA_FOLDER):
        print("data folder not existant or in wrong layout.\n\t", DATA_FOLDER)
        exit(0)
    # check existance of testset
    if TESTSET_FOLDER is not None and not os.path.isdir(TESTSET_FOLDER):
        print("testset folder not existant or in wrong layout.\n\t",
              DATA_FOLDER)
        exit(0)
    '''
    ---------------------------preparations---------------------------
    '''

    # CUDA for PyTorch
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda:0" if use_cuda else "cpu")
    print("using device: ", str(device))

    # loading the validation samples to make online evaluations
    path_to_valX = args.valX
    path_to_valY = args.valY
    valX = None
    valY = None
    if path_to_valX is not None and path_to_valY is not None \
            and os.path.exists(path_to_valX) and os.path.exists(path_to_valY) \
            and os.path.isfile(path_to_valX) and os.path.isfile(path_to_valY):
        with torch.no_grad():
            valX, valY = torch.load(path_to_valX, map_location='cpu'), \
                   torch.load(path_to_valY, map_location='cpu')
    '''
    ---------------------------loading dataset and normalizing---------------------------
    '''
    # Dataloader Parameters
    train_params = {
        'batch_size': BATCHSIZE,
        'shuffle': True,
        'num_workers': NUMBER_OF_WORKERS
    }
    test_params = {
        'batch_size': TEST_BATCHSIZE,
        'shuffle': False,
        'num_workers': NUMBER_OF_WORKERS
    }

    # create a folder for the weights and custom logs
    if not os.path.isdir(WEIGHT_DIR):
        os.makedirs(WEIGHT_DIR)
    if not os.path.isdir(CUSTOM_LOG_DIR):
        os.makedirs(CUSTOM_LOG_DIR)

    labelsNorm = None
    # NORMLABEL
    # normalizing on a trainingset wide mean and std
    mean = None
    std = None
    if args.norm:
        print('computing mean and std over trainingset')
        # computes mean and std over all ground truths in dataset to tackle the problem of numerical insignificance
        mean, std = computeMeanStdOverDataset('CONRADataset', DATA_FOLDER,
                                              train_params, device)
        print('\niodine (mean/std): {}\t{}'.format(mean[0], std[0]))
        print('water (mean/std): {}\t{}\n'.format(mean[1], std[1]))
        labelsNorm = transforms.Normalize(mean=[0, 0], std=std)
        m2, s2 = computeMeanStdOverDataset('CONRADataset',
                                           DATA_FOLDER,
                                           train_params,
                                           device,
                                           transform=labelsNorm)
        print("new mean and std are:")
        print('\nnew iodine (mean/std): {}\t{}'.format(m2[0], s2[0]))
        print('new water (mean/std): {}\t{}\n'.format(m2[1], s2[1]))

    traindata = CONRADataset(DATA_FOLDER,
                             True,
                             device=device,
                             precompute=True,
                             transform=labelsNorm)

    testdata = None
    if TESTSET_FOLDER is not None:
        testdata = CONRADataset(TESTSET_FOLDER,
                                False,
                                device=device,
                                precompute=True,
                                transform=labelsNorm)
    else:
        testdata = CONRADataset(DATA_FOLDER,
                                False,
                                device=device,
                                precompute=True,
                                transform=labelsNorm)

    trainingset = DataLoader(traindata, **train_params)
    testset = DataLoader(testdata, **test_params)
    '''
    ----------------loading model and checkpoints---------------------
    '''

    if args.model == "unet":
        m = UNet(2, 2).to(device)
        print(
            "using the U-Net architecture with {} trainable params; Good Luck!"
            .format(count_trainables(m)))
    else:
        m = simpleConvNet(2, 2).to(device)

    o = optim.SGD(m.parameters(), lr=LR, momentum=MOM)

    loss_fn = nn.MSELoss()

    test_loss = None
    train_loss = None

    if len(os.listdir(WEIGHT_DIR)) != 0:
        checkpoints = os.listdir(WEIGHT_DIR)
        checkDir = {}
        latestCheckpoint = 0
        for i, checkpoint in enumerate(checkpoints):
            stepOfCheckpoint = int(
                checkpoint.split(str(args.model) +
                                 str(args.name))[-1].split('.pt')[0])
            checkDir[stepOfCheckpoint] = checkpoint
            latestCheckpoint = max(latestCheckpoint, stepOfCheckpoint)
            print("[{}] {}".format(stepOfCheckpoint, checkpoint))
        # if on development machine, prompt for input, else just take the most recent one
        if 'faui' in os.uname()[1]:
            toUse = int(input("select checkpoint to use: "))
        else:
            toUse = latestCheckpoint
        checkpoint = torch.load(os.path.join(WEIGHT_DIR, checkDir[toUse]))
        m.load_state_dict(checkpoint['model_state_dict'])
        m.to(device)  # pushing weights to gpu
        o.load_state_dict(checkpoint['optimizer_state_dict'])
        train_loss = checkpoint['train_loss']
        test_loss = checkpoint['test_loss']
        START = checkpoint['epoch']
        print("using checkpoint {}:\n\tloss(train/test): {}/{}".format(
            toUse, train_loss, test_loss))
    else:
        print("starting from scratch")
    '''
    -----------------------------training-----------------------------
    '''
    global_step = 0
    # calculating initial loss
    if test_loss is None or train_loss is None:
        print("calculating initial loss")
        m.eval()
        print("testset...")
        test_loss = calculate_loss(set=testset,
                                   loss_fn=loss_fn,
                                   length_set=len(testdata),
                                   dev=device,
                                   model=m)
        print("trainset...")
        train_loss = calculate_loss(set=trainingset,
                                    loss_fn=loss_fn,
                                    length_set=len(traindata),
                                    dev=device,
                                    model=m)

    ## SSIM and R value
    R = []
    SSIM = []
    performanceFLE = os.path.join(CUSTOM_LOG_DIR, "performance.csv")
    with open(performanceFLE, 'w+') as f:
        f.write(
            "step, SSIMiodine, SSIMwater, Riodine, Rwater, train_loss, test_loss\n"
        )
    print("computing ssim and r coefficents to: {}".format(performanceFLE))

    # printing runtime information
    print(
        "starting training at {} for {} epochs {} iterations each\n\t{} total".
        format(START, EPOCHS, ITER, EPOCHS * ITER))

    print("\tbatchsize: {}\n\tloss: {}\n\twill save results to \"{}\"".format(
        BATCHSIZE, train_loss, CHECKPOINT))
    print(
        "\tmodel: {}\n\tlearningrate: {}\n\tmomentum: {}\n\tnorming output space: {}"
        .format(args.model, LR, MOM, args.norm))

    #start actual training loops
    for e in range(START, START + EPOCHS):
        # iterations will not be interupted with validation and metrics
        for i in range(ITER):
            global_step = (e * ITER) + i

            # training
            m.train()
            iteration_loss = 0
            for x, y in tqdm(trainingset):
                x, y = x.to(device=device,
                            dtype=torch.float), y.to(device=device,
                                                     dtype=torch.float)
                pred = m(x)
                loss = loss_fn(pred, y)
                iteration_loss += loss.item()
                o.zero_grad()
                loss.backward()
                o.step()
            print("\niteration {}: --accumulated loss {}".format(
                global_step, iteration_loss))

        # validation, saving and logging
        print("\nvalidating")
        m.eval()  # disable dropout batchnorm etc
        print("testset...")
        test_loss = calculate_loss(set=testset,
                                   loss_fn=loss_fn,
                                   length_set=len(testdata),
                                   dev=device,
                                   model=m)
        print("trainset...")
        train_loss = calculate_loss(set=trainingset,
                                    loss_fn=loss_fn,
                                    length_set=len(traindata),
                                    dev=device,
                                    model=m)

        print("calculating SSIM and R coefficients")
        currSSIM, currR = performance(set=testset,
                                      dev=device,
                                      model=m,
                                      bs=TEST_BATCHSIZE)
        print("SSIM (iod/water): {}/{}\nR (iod/water): {}/{}".format(
            currSSIM[0], currSSIM[1], currR[0], currR[1]))
        with open(performanceFLE, 'a') as f:
            newCSVline = "{}, {}, {}, {}, {}, {}, {}\n".format(
                global_step, currSSIM[0], currSSIM[1], currR[0], currR[1],
                train_loss, test_loss)
            f.write(newCSVline)
            print("wrote new line to csv:\n\t{}".format(newCSVline))
        '''
            if valX and valY were set in preparations, use them to perform analytics.
            if not, use the first sample from the testset to perform analytics
        '''
        with torch.no_grad():
            truth, pred = None, None
            IMAGE_LOG_DIR = os.path.join(CUSTOM_LOG_DIR, str(global_step))
            if not os.path.isdir(IMAGE_LOG_DIR):
                os.makedirs(IMAGE_LOG_DIR)

            if valX is not None and valY is not None:
                batched = np.zeros((BATCHSIZE, *valX.numpy().shape))
                batched[0] = valX.numpy()
                batched = torch.from_numpy(batched).to(device=device,
                                                       dtype=torch.float)
                pred = m(batched)
                pred = pred.cpu().numpy()[0]
                truth = valY.numpy()  # still on cpu

                assert pred.shape == truth.shape
            else:
                for x, y in testset:
                    # x, y in shape[2,2,480,620] [b,c,h,w]
                    x, y = x.to(device=device,
                                dtype=torch.float), y.to(device=device,
                                                         dtype=torch.float)
                    pred = m(x)
                    pred = pred.cpu().numpy()[
                        0]  # taking only the first sample of batch
                    truth = y.cpu().numpy()[
                        0]  # first projection for evaluation
            advanvedMetrics(truth, pred, mean, std, global_step, args.norm,
                            IMAGE_LOG_DIR)

        print("logging")
        CHECKPOINT = os.path.join(
            WEIGHT_DIR,
            str(args.model) + str(args.name) + str(global_step) + ".pt")
        torch.save(
            {
                'epoch': e + 1,  # end of this epoch; so resume at next.
                'model_state_dict': m.state_dict(),
                'optimizer_state_dict': o.state_dict(),
                'train_loss': train_loss,
                'test_loss': test_loss
            },
            CHECKPOINT)
        print('\tsaved weigths to: ', CHECKPOINT)
        if logger is not None and train_loss is not None:
            logger.add_scalar('test_loss', test_loss, global_step=global_step)
            logger.add_scalar('train_loss',
                              train_loss,
                              global_step=global_step)
            logger.add_image("iodine-prediction",
                             pred[0].reshape(1, 480, 620),
                             global_step=global_step)
            logger.add_image("water-prediction",
                             pred[1].reshape(1, 480, 620),
                             global_step=global_step)
            # logger.add_image("water-prediction", wat)
            print(
                "\ttensorboard updated with test/train loss and a sample image"
            )
        elif train_loss is not None:
            print("\tloss of global-step {}: {}".format(
                global_step, train_loss))
        elif not useTensorboard:
            print("\t(tb-logging disabled) test/train loss: {}/{} ".format(
                test_loss, train_loss))
        else:
            print("\tno loss accumulated yet")

    # saving final results
    print("saving upon exit")
    torch.save(
        {
            'epoch': EPOCHS,
            'model_state_dict': m.state_dict(),
            'optimizer_state_dict': o.state_dict(),
            'train_loss': train_loss,
            'test_loss': test_loss
        }, CHECKPOINT)
    print('\tsaved progress to: ', CHECKPOINT)
    if logger is not None and train_loss is not None:
        logger.add_scalar('test_loss', test_loss, global_step=global_step)
        logger.add_scalar('train_loss', train_loss, global_step=global_step)
Exemplo n.º 8
0
torch.backends.cudnn.benchmark = True

train_dataset = Seg_dataset(cfg)
train_loader = data.DataLoader(train_dataset,
                               batch_size=cfg.bs,
                               shuffle=True,
                               num_workers=8,
                               pin_memory=True,
                               drop_last=False)

if cfg.model == 'unet':
    model = UNet(input_channels=3).cuda()
    model.apply(model.weights_init_normal)
else:
    model = DLASeg(cfg).cuda()
model.train()

if cfg.resume:
    resume_epoch = int(cfg.resume.split('.')[0].split('_')[1]) + 1
    model.load_state_dict(torch.load('weights/' + cfg.resume), strict=True)
    print(f'Resume training with \'{cfg.resume}\'.')
else:
    resume_epoch = 0
    print('Training with ImageNet pre-trained weights.')

criterion = nn.CrossEntropyLoss(ignore_index=255).cuda()
if cfg.optim == 'sgd':
    optimizer = torch.optim.SGD(model.optim_parameters(),
                                cfg.lr,
                                cfg.momentum,
                                weight_decay=cfg.decay)
Exemplo n.º 9
0
class Trainer:
    def __init__(self, seq_length, color_channels, unet_path="pretrained/unet.mdl",
                 discrim_path="pretrained/dicrim.mdl",
                 facenet_path="pretrained/facenet.mdl",
                 vgg_path="",
                 embedding_size=1000,
                 unet_depth=3,
                 unet_filts=32,
                 facenet_filts=32,
                 resnet=18):

        self.color_channels = color_channels
        self.margin = 0.5
        self.writer = SummaryWriter(log_dir="logs")

        self.unet_path = unet_path
        self.discrim_path = discrim_path
        self.facenet_path = facenet_path

        self.unet = UNet(in_channels=color_channels, out_channels=color_channels,
                         depth=unet_depth,
                         start_filts=unet_filts,
                         up_mode="upsample",
                         merge_mode='concat').to(device)

        self.discrim = FaceNetModel(embedding_size=embedding_size, start_filts=facenet_filts,
                                    in_channels=color_channels, resnet=resnet,
                                    pretrained=False).to(device)

        self.facenet = FaceNetModel(embedding_size=embedding_size, start_filts=facenet_filts,
                                    in_channels=color_channels, resnet=resnet,
                                    pretrained=False).to(device)

        if os.path.isfile(unet_path):
            self.unet.load_state_dict(torch.load(unet_path))
            print("unet loaded")

        if os.path.isfile(discrim_path):
            self.discrim.load_state_dict(torch.load(discrim_path))
            print("discrim loaded")

        if os.path.isfile(facenet_path):
            self.facenet.load_state_dict(torch.load(facenet_path))
            print("facenet loaded")
        if os.path.isfile(vgg_path):
            self.vgg_loss_network = LossNetwork(vgg_face_dag(vgg_path)).to(device)
            self.vgg_loss_network.eval()

            print("vgg loaded")

        self.mse_loss_function = nn.MSELoss().to(device)
        self.discrim_loss_function = nn.BCELoss().to(device)
        self.triplet_loss_function = TripletLoss(margin=self.margin)

        self.unet_optimizer = torch.optim.Adam(self.unet.parameters(), betas=(0.9, 0.999))
        self.discrim_optimizer = torch.optim.Adam(self.discrim.parameters(), betas=(0.9, 0.999))
        self.facenet_optimizer = torch.optim.Adam(self.facenet.parameters(), betas=(0.9, 0.999))

    def test(self, test_loader, epoch=0):
        X, y = next(iter(test_loader))

        B, D, C, W, H = X.shape
        # X = X.view(B, C * D, W, H)

        self.unet.eval()
        self.facenet.eval()
        self.discrim.eval()
        with torch.no_grad():
            y_ = self.unet(X.to(device))

            mse = self.mse_loss_function(y_, y.to(device))
            loss_G = self.loss_GAN_generator(btch_X=X.to(device))
            loss_D = self.loss_GAN_discrimator(btch_X=X.to(device), btch_y=y.to(device))

            loss_facenet, _, n_bad = self.loss_facenet(X.to(device), y.to(device))

        plt.title(f"epoch {epoch} mse={mse.item():.4} facenet={loss_facenet.item():.4} bad={n_bad / B ** 2}")
        i = np.random.randint(0, B)
        a = np.hstack((y[i].transpose(0, 1).transpose(1, 2), y_[i].transpose(0, 1).transpose(1, 2).to(cpu)))
        b = np.hstack((X[i][0].transpose(0, 1).transpose(1, 2),
                       X[i][-1].transpose(0, 1).transpose(1, 2)))
        plt.imshow(np.vstack((a, b)))
        plt.axis('off')
        plt.show()

        self.writer.add_scalar("test bad_percent", n_bad / B ** 2, global_step=epoch)
        self.writer.add_scalar("test loss", mse.item(), global_step=epoch)
        # self.writer.add_scalars("test GAN", {"discrim": loss_D.item(),
        #                                      "gen": loss_G.item()}, global_step=epoch)

        with torch.no_grad():
            n_for_show = 10
            y_show_ = y_.to(device)
            y_show = y.to(device)
            embeddings_anc, _ = self.facenet(y_show_)
            embeddings_pos, _ = self.facenet(y_show)

            embeds = torch.cat((embeddings_anc[:n_for_show], embeddings_pos[:n_for_show]))
            imgs = torch.cat((y_show_[:n_for_show], y_show[:n_for_show]))
            names = list(range(n_for_show)) * 2
            # print(embeds.shape, imgs.shape, len(names))
            # self.writer.add_embedding(mat=embeds, metadata=names, label_img=imgs, tag="embeddings", global_step=epoch)

        trshs, fprs, tprs = roc_curve(embeddings_anc.detach().to(cpu), embeddings_pos.detach().to(cpu))
        rnk1 = rank1(embeddings_anc.detach().to(cpu), embeddings_pos.detach().to(cpu))
        plt.step(fprs, tprs)
        # plt.xlim((1e-4, 1))
        plt.yticks(np.arange(0, 1, 0.05))
        plt.xticks(np.arange(min(fprs), max(fprs), 10))
        plt.xscale('log')
        plt.title(f"ROC auc={auc(fprs, tprs)} rnk1={rnk1}")
        self.writer.add_figure("ROC test", plt.gcf(), global_step=epoch)
        self.writer.add_scalar("auc", auc(fprs, tprs), global_step=epoch)
        self.writer.add_scalar("rank1", rnk1, global_step=epoch)
        print(f"\n###### {epoch} TEST mse={mse.item():.4} GAN(G/D)={loss_G.item():.4}/{loss_D.item():.4} "
              f"facenet={loss_facenet.item():.4} bad={n_bad / B ** 2:.4} auc={auc(fprs, tprs)} rank1={rnk1} #######")

    def test_test(self, test_loader):
        X, ys = next(iter(test_loader))
        true_idx = 0
        x = X[true_idx]

        D, C, W, H = x.shape
        # x = x.view(C * D, W, H)

        dists = list()
        with torch.no_grad():
            y_ = self.unet(x.to(device))

            embedding_anc, _ = self.facenet(y_)
            embeddings_pos, _ = self.facenet(ys)
            for emb_pos_item in embeddings_pos:
                dist = l2_dist.forward(embedding_anc, emb_pos_item)
                dists.append(dist)

        a_sorted = np.argsort(dists)

        a = np.hstack((ys[true_idx].transpose(0, 1).transpose(1, 2),
                       y_.transpose(0, 1).transpose(1, 2).to(cpu).numpy(),
                       ys[a_sorted[0]].transpose(0, 1).transpose(1, 2)))

        b = np.hstack((x[0:3].transpose(0, 1).transpose(1, 2),
                       x[D // 2 * C:D // 2 * C + 3].transpose(0, 1).transpose(1, 2),
                       x[-3:].transpose(0, 1).transpose(1, 2)))

        b_ = b - np.min(b)
        b_ = b_ / np.max(b)
        b_ = equalize_func([(b_ * 255).astype(np.uint8)], use_clahe=True)[0]
        b = b_.astype(np.float32) / 255

        plt.imshow(cv2.cvtColor(np.vstack((a, b)), cv2.COLOR_BGR2RGB))
        plt.axis('off')
        plt.show()

    def loss_facenet(self, X, y, is_detached=False):
        B, D, C, W, H = X.shape

        y_ = self.unet(X)

        embeddings_anc, D_fake = self.facenet(y_ if not is_detached else y_.detach())
        embeddings_pos, D_real = self.facenet(y)

        target_real = torch.full_like(D_fake, 1)
        loss_gen = self.discrim_loss_function(D_fake, target_real)

        pos_dist = l2_dist.forward(embeddings_anc, embeddings_pos)
        bad_triplets_loss = None

        n_bad = 0
        for shift in range(1, B):

            embeddings_neg = torch.roll(embeddings_pos, shift, 0)
            neg_dist = l2_dist.forward(embeddings_anc, embeddings_neg)

            bad_triplets_idxs = np.where((neg_dist - pos_dist < self.margin).cpu().numpy().flatten())[0]

            if shift == 1:
                bad_triplets_loss = self.triplet_loss_function.forward(embeddings_anc[bad_triplets_idxs],
                                                                       embeddings_pos[bad_triplets_idxs],
                                                                       embeddings_neg[bad_triplets_idxs]).to(
                    device)
            else:
                bad_triplets_loss += self.triplet_loss_function.forward(embeddings_anc[bad_triplets_idxs],
                                                                        embeddings_pos[bad_triplets_idxs],
                                                                        embeddings_neg[bad_triplets_idxs]).to(device)
            n_bad += len(bad_triplets_idxs)

        bad_triplets_loss /= B
        return bad_triplets_loss, torch.mean(loss_gen), n_bad

    # def loss_mse(self, btch_X, btch_y):
    #     btch_y_ = self.unet(btch_X)
    #     loss_unet = self.mse_loss_function(btch_y_, btch_y)
    #
    #     features_target = self.facenet.forward_mse(btch_y)
    #     features = self.facenet.forward_mse(btch_y_)
    #
    #     loss_first_layer = self.mse_loss_function(features, features_target)
    #     return loss_unet + loss_first_layer

    def loss_mse_vgg(self, btch_X, btch_y, k_mse, k_vgg):
        btch_y_ = self.unet(btch_X)
        # print(btch_y_.shape,btch_y.shape)
        perceptual_btch_y_ = self.vgg_loss_network(btch_y_)
        perceptual_btch_y = self.vgg_loss_network(btch_y)
        perceptual_loss = 0.0
        for a, b in zip(perceptual_btch_y_, perceptual_btch_y):
            perceptual_loss += self.mse_loss_function(a, b)
        return k_vgg * perceptual_loss + k_mse * self.mse_loss_function(btch_y_, btch_y)

    def loss_GAN_discrimator(self, btch_X, btch_y):
        btch_y_ = self.unet(btch_X)

        _, y_D_fake_ = self.discrim(btch_y_.detach())
        _, y_D_real_ = self.discrim(btch_y)

        target_fake = torch.full_like(y_D_fake_, 0)
        target_real = torch.full_like(y_D_real_, 1)

        loss_D_fake_ = self.discrim_loss_function(y_D_fake_, target_fake)
        loss_D_real_ = self.discrim_loss_function(y_D_real_, target_real)

        loss_discrim = (loss_D_real_ + loss_D_fake_)

        return loss_discrim

    def loss_GAN_generator(self, btch_X):
        btch_y_ = self.unet(btch_X)

        _, y_D_fake_ = self.discrim(btch_y_)

        target_real = torch.full_like(y_D_fake_, 1)

        loss_gen = self.discrim_loss_function(y_D_fake_, target_real)

        return loss_gen

    def relax_discriminator(self, btch_X, btch_y):
        self.discrim.zero_grad()

        # train with real
        y_discrim_real_ = self.discrim(btch_y)
        y_discrim_real_ = y_discrim_real_.mean()
        y_discrim_real_.backward(self.mone)

        # train with fake
        btch_y_ = self.unet(btch_X)
        y_discrim_fake_detached_ = self.discrim(btch_y_.detach())
        y_discrim_fake_detached_ = y_discrim_fake_detached_.mean()
        y_discrim_fake_detached_.backward(self.one)

        # gradient_penalty
        gradient_penalty = self.discrim_gradient_penalty(btch_y, btch_y_)
        gradient_penalty.backward()

        self.discrim_optimizer.step()

    def relax_generator(self, btch_X):
        self.unet.zero_grad()

        btch_y_ = self.unet(btch_X)

        y_discrim_fake_ = self.discrim(btch_y_)
        y_discrim_fake_ = y_discrim_fake_.mean()
        y_discrim_fake_.backward(self.mone)
        self.unet_optimizer.step()

    def discrim_gradient_penalty(self, real_y, fake_y):
        lambd = 10
        btch_size = real_y.shape[0]

        alpha = torch.rand(btch_size, 1, 1, 1).to(device)
        # print(alpha.shape, real_y.shape)
        alpha = alpha.expand_as(real_y)

        interpolates = alpha * real_y + (1 - alpha) * fake_y
        interpolates = interpolates.to(device)

        interpolates = autograd.Variable(interpolates, requires_grad=True)

        interpolates_out = self.discrim(interpolates)

        gradients = autograd.grad(outputs=interpolates_out, inputs=interpolates,
                                  grad_outputs=torch.ones(interpolates_out.size()).to(device),
                                  create_graph=True, retain_graph=True, only_inputs=True)[0]

        gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * lambd
        return gradient_penalty

    def train(self, train_loader, test_loader, batch_size=2, epochs=30,
              k_gen=1, k_discrim=1, k_mse=1, k_facenet=1, k_facenet_back=1, k_vgg=1):
        """
        :param X: np.array shape=(n_videos, n_frames, h, w)
        :param y: np.array shape=(n_videos, h, w)
        :param epochs: int
        """
        print("\nSTART TRAINING\n")

        for epoch in range(epochs):
            self.test(test_loader, epoch)
            self.unet.train()
            self.facenet.train()
            self.discrim.train()
            # train by batches
            for idx, (btch_X, btch_y) in enumerate(train_loader):
                B, D, C, W, H = btch_X.shape
                # btch_X = btch_X.view(B, C * D, W, H)

                btch_X = btch_X.to(device)
                btch_y = btch_y.to(device)

                # Mse loss
                self.unet.zero_grad()

                mse = self.loss_mse_vgg(btch_X, btch_y, k_mse, k_vgg)

                mse.backward()
                self.unet_optimizer.step()

                # facenet_backup = deepcopy(self.facenet.state_dict())
                # for i in range(unrolled_iterations):
                self.discrim.zero_grad()
                loss_D = self.loss_GAN_discrimator(btch_X, btch_y)
                loss_D = k_discrim * loss_D
                loss_D.backward()
                self.discrim_optimizer.step()

                self.discrim.zero_grad()
                self.unet.zero_grad()
                loss_G = self.loss_GAN_generator(btch_X)
                loss_G = k_gen * loss_G
                loss_G.backward()
                self.unet_optimizer.step()

                # Facenet
                self.unet.zero_grad()
                self.facenet.zero_grad()
                facenet_loss, _, n_bad = self.loss_facenet(btch_X, btch_y)

                facenet_loss = k_facenet * facenet_loss
                facenet_loss.backward()
                self.facenet_optimizer.step()

                self.unet.zero_grad()
                self.facenet.zero_grad()
                facenet_back_loss, _, n_bad = self.loss_facenet(btch_X, btch_y)

                facenet_back_loss = k_facenet_back * facenet_back_loss
                facenet_back_loss.backward()
                self.unet_optimizer.step()

                print(f"btch {idx * batch_size} mse={mse.item():.4} GAN(G/D)={loss_G.item():.4}/{loss_D.item():.4} "
                      f"facenet={facenet_loss.item():.4} bad={n_bad / B ** 2:.4}")

                global_step = epoch * len(train_loader.dataset) // batch_size + idx
                self.writer.add_scalar("train bad_percent", n_bad / B ** 2, global_step=global_step)
                self.writer.add_scalar("train loss", mse.item(), global_step=global_step)
                # self.writer.add_scalars("train GAN", {"discrim": loss_D.item(),
                #                                       "gen": loss_G.item()}, global_step=global_step)

            torch.save(self.unet.state_dict(), self.unet_path)
            torch.save(self.discrim.state_dict(), self.discrim_path)
            torch.save(self.facenet.state_dict(), self.facenet_path)
Exemplo n.º 10
0
train_loss_seg_a = []
train_loss_seg_b = []

train_dice = []
val_loss_a = []
val_dice_a = []
val_loss_b = []
val_dice_b = []

for e in range(epochs):
    epoch_train_loss_rec = []
    epoch_train_loss_seg = []
    
    dice_scores = []
    net.train()
    pseudo.train()
    
    print('Epoch ', e)
    
    for i, data in enumerate(tqdm.tqdm(train_loader)):
        iteration += batch_size
        
        optimiser_ps.zero_grad()
        optimiser_net.zero_grad()
                
        # either train pseudolabeller or the net
        # first 10 epochs train the pseudo labeller on edges
        if e < epochs_pseudo:
            edges_a = data['A'][2].cuda()
            target_a = data['A'][1].cuda()
            
Exemplo n.º 11
0
    with open(path, mode=mode) as f:
        f.writelines(context + "\n")


cuda0 = torch.device('cuda:0')
net = UNet(27).to(cuda0)
criterion = nn.MSELoss().to(cuda0)
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
train_data_laoder, test_data_loader = get_dataloader(batch_size=4)
write_log("weight/train.log", str(datetime.datetime.now()), "w")
write_log("weight/train.log", "train start")
print(net)
for epoch in range(300):
    # train phase
    running_loss = 0.0
    net.train()
    for i, batch in enumerate(train_data_laoder):

        inputs = batch['image'].to(cuda0)
        target = batch['target'].to(cuda0)

        optimizer.zero_grad()
        outputs = net(inputs)
        batch_size = outputs.size(0)
        outputs = outputs.reshape((batch_size, -1))
        target = target.reshape((batch_size, -1))
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
Exemplo n.º 12
0
def train(model_name=''):
    # Init data
    train_dataset, val_dataset = prepare_datasets()
    train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=10, shuffle=True)
    loaders = dict(train=train_loader, val=val_loader)

    # Init Model
    if model_name == '':
        model = UNet().cuda()
    else:
        model = data_utils.load_model(model_name).cuda()

    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, amsgrad=True)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer,
                                                       gamma=0.984)
    loss_fn = nn.BCELoss()

    epochs = 500
    epoch_losses = dict(train=[], val=[])
    for epoch in range(epochs):
        for phase in 'train val'.split():
            if phase == 'train':
                model = model.train()
                torch.set_grad_enabled(True)

            else:
                model = model.eval()
                torch.set_grad_enabled(False)

            loader = loaders[phase]
            running_loss = []

            for batch in loader:
                imgs, masks = batch
                imgs = imgs.cuda()
                masks = masks.cuda()

                outputs = model(imgs)
                loss = loss_fn(outputs, masks)

                running_loss.append(loss.item())

                if phase == 'train':
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()

            # End of Epoch
            print(f'{epoch}) {phase} loss: {np.mean(running_loss)}')
            visualize_results(loader, model, epoch, phase)

            if epoch % 10 == 0:
                results_dir = 'weight/'
                if not os.path.isdir(results_dir):
                    os.makedirs(results_dir)

                data_utils.save_model(model, results_dir + f'model_{epoch}.pt')

            epoch_losses[phase].append(np.mean(running_loss))
            if phase == 'val':
                df = pd.DataFrame(data=epoch_losses)
                df.to_csv('loss.csv')
            tensorboard(epoch_losses[phase], phase)

            if phase == 'train':
                scheduler.step()
Exemplo n.º 13
0
adversarial_loss = Adversarial_Loss().cuda()
discriminate_loss = Discriminate_Loss().cuda()
gradient_loss = Gradient_Loss(3).cuda()
flow_loss = Flow_Loss().cuda()
intensity_loss = Intensity_Loss().cuda()

train_dataset = Dataset.train_dataset(train_cfg)

# Remember to set drop_last=True, because we need to use 4 frames to predict one frame.
train_dataloader = DataLoader(dataset=train_dataset, batch_size=train_cfg.batch_size,
                              shuffle=True, num_workers=4, drop_last=True)

writer = SummaryWriter(f'tensorboard_log/{train_cfg.dataset}_bs{train_cfg.batch_size}')
start_iter = int(train_cfg.resume.split('_')[-1].split('.')[0]) if train_cfg.resume else 0
training = True
generator = generator.train()
discriminator = discriminator.train()

try:
    step = start_iter
    while training:
        for indice, clips, flow_strs in train_dataloader:
            input_frames = clips[:, 0:12, :, :].cuda()  # (n, 12, 256, 256)
            target_frame = clips[:, 12:15, :, :].cuda()  # (n, 3, 256, 256)
            input_last = input_frames[:, 9:12, :, :].cuda()  # use for flow_loss

            # pop() the used frame index, this can't work in train_dataset.__getitem__ because of multiprocessing.
            for index in indice:
                train_dataset.all_seqs[index].pop()
                if len(train_dataset.all_seqs[index]) == 0:
                    train_dataset.all_seqs[index] = list(range(len(train_dataset.videos[index]) - 4))
Exemplo n.º 14
0
def main():
    """Create the model and start the training."""
    args = get_arguments()

    cudnn.enabled = True
    n_discriminators = 5

    # create teacher & student
    student_net = UNet(3, n_classes=args.num_classes)
    teacher_net = UNet(3, n_classes=args.num_classes)
    student_params = list(student_net.parameters())

    # teacher doesn't need gradient as it's just a EMA of the student
    teacher_params = list(teacher_net.parameters())
    for param in teacher_params:
        param.requires_grad = False

    student_net.train()
    student_net.cuda(args.gpu)
    teacher_net.train()
    teacher_net.cuda(args.gpu)

    cudnn.benchmark = True
    unsup_weights = [
        args.unsup_weight5, args.unsup_weight6, args.unsup_weight7,
        args.unsup_weight8, args.unsup_weight9
    ]
    lambda_adv_tgts = [
        args.lambda_adv_tgt5, args.lambda_adv_tgt6, args.lambda_adv_tgt7,
        args.lambda_adv_tgt8, args.lambda_adv_tgt9
    ]

    # create a list of discriminators
    discriminators = []
    for dis_idx in range(n_discriminators):
        discriminators.append(FCDiscriminator(num_classes=args.num_classes))
        discriminators[dis_idx].train()
        discriminators[dis_idx].cuda(args.gpu)

    if not os.path.exists(args.snapshot_dir):
        os.makedirs(args.snapshot_dir)

    max_iters = args.num_steps * args.iter_size * args.batch_size
    src_set = REFUGE(True,
                     domain='REFUGE_SRC',
                     is_transform=True,
                     augmentations=aug_student,
                     aug_for_target=aug_teacher,
                     max_iters=max_iters)
    src_loader = data.DataLoader(src_set,
                                 batch_size=args.batch_size,
                                 shuffle=True,
                                 num_workers=args.num_workers,
                                 pin_memory=True)

    src_loader_iter = enumerate(src_loader)
    tgt_set = REFUGE(True,
                     domain='REFUGE_DST',
                     is_transform=True,
                     augmentations=aug_student,
                     aug_for_target=aug_teacher,
                     max_iters=max_iters)
    tgt_loader = data.DataLoader(tgt_set,
                                 batch_size=args.batch_size,
                                 shuffle=True,
                                 num_workers=args.num_workers,
                                 pin_memory=True)

    tgt_loader_iter = enumerate(tgt_loader)
    student_optimizer = optim.SGD(student_params,
                                  lr=args.learning_rate,
                                  momentum=args.momentum,
                                  weight_decay=args.weight_decay)
    teacher_optimizer = optim_weight_ema.WeightEMA(teacher_params,
                                                   student_params,
                                                   alpha=args.teacher_alpha)

    d_optimizers = []
    for idx in range(n_discriminators):
        optimizer = optim.Adam(discriminators[idx].parameters(),
                               lr=args.learning_rate_D,
                               betas=(0.9, 0.99))
        d_optimizers.append(optimizer)

    calc_bce_loss = torch.nn.BCEWithLogitsLoss()

    # labels for adversarial training
    source_label, tgt_label = 0, 1
    for i_iter in range(args.num_steps):

        total_seg_loss = 0
        seg_loss_vals = [0] * n_discriminators
        adv_tgt_loss_vals = [0] * n_discriminators
        d_loss_vals = [0] * n_discriminators
        unsup_loss_vals = [0] * n_discriminators

        for d_optimizer in d_optimizers:
            d_optimizer.zero_grad()
            adjust_learning_rate_D(d_optimizer, i_iter, args)

        student_optimizer.zero_grad()
        adjust_learning_rate(student_optimizer, i_iter, args)

        for sub_i in range(args.iter_size):

            # ******** Optimize source network with segmentation loss ********
            # As we don't change the discriminators, their parameters are fixed
            for discriminator in discriminators:
                for param in discriminator.parameters():
                    param.requires_grad = False

            _, src_batch = src_loader_iter.__next__()
            _, _, src_images, src_labels, _ = src_batch
            src_images = Variable(src_images).cuda(args.gpu)

            # calculate the segmentation losses
            sup_preds = list(student_net(src_images))
            seg_losses, total_seg_loss = [], 0
            for idx, sup_pred in enumerate(sup_preds):
                sup_interp_pred = (sup_pred)
                # you also can use dice loss like: dice_loss(src_labels, sup_interp_pred)
                seg_loss = Weighted_Jaccard_loss(src_labels, sup_interp_pred,
                                                 args.class_weights, args.gpu)
                seg_losses.append(seg_loss)
                total_seg_loss += seg_loss * unsup_weights[idx]
                seg_loss_vals[idx] += seg_loss.item() / args.iter_size

            _, tgt_batch = tgt_loader_iter.__next__()
            tgt_images0, tgt_lbl0, tgt_images1, tgt_lbl1, _ = tgt_batch
            tgt_images0 = Variable(tgt_images0).cuda(args.gpu)
            tgt_images1 = Variable(tgt_images1).cuda(args.gpu)

            # calculate ensemble losses
            stu_unsup_preds = list(student_net(tgt_images1))
            tea_unsup_preds = teacher_net(tgt_images0)
            total_mse_loss = 0
            for idx in range(n_discriminators):
                stu_unsup_probs = F.softmax(stu_unsup_preds[idx], dim=-1)
                tea_unsup_probs = F.softmax(tea_unsup_preds[idx], dim=-1)

                unsup_loss = calc_mse_loss(stu_unsup_probs, tea_unsup_probs,
                                           args.batch_size)
                unsup_loss_vals[idx] += unsup_loss.item() / args.iter_size
                total_mse_loss += unsup_loss * unsup_weights[idx]

            total_mse_loss = total_mse_loss / args.iter_size

            # As the requires_grad is set to False in the discriminator, the
            # gradients are only accumulated in the generator, the target
            # student network is optimized to make the outputs of target domain
            # images close to the outputs of source domain images
            stu_unsup_preds = list(student_net(tgt_images0))
            d_outs, total_adv_loss = [], 0
            for idx in range(n_discriminators):
                stu_unsup_interp_pred = (stu_unsup_preds[idx])
                d_outs.append(discriminators[idx](stu_unsup_interp_pred))
                label_size = d_outs[idx].data.size()
                labels = torch.FloatTensor(label_size).fill_(source_label)
                labels = Variable(labels).cuda(args.gpu)
                adv_tgt_loss = calc_bce_loss(d_outs[idx], labels)

                total_adv_loss += lambda_adv_tgts[idx] * adv_tgt_loss
                adv_tgt_loss_vals[idx] += adv_tgt_loss.item() / args.iter_size

            total_adv_loss = total_adv_loss / args.iter_size

            # requires_grad is set to True in the discriminator,  we only
            # accumulate gradients in the discriminators, the discriminators are
            # optimized to make true predictions
            d_losses = []
            for idx in range(n_discriminators):
                discriminator = discriminators[idx]
                for param in discriminator.parameters():
                    param.requires_grad = True

                sup_preds[idx] = sup_preds[idx].detach()
                d_outs[idx] = discriminators[idx](sup_preds[idx])

                label_size = d_outs[idx].data.size()
                labels = torch.FloatTensor(label_size).fill_(source_label)
                labels = Variable(labels).cuda(args.gpu)

                d_losses.append(calc_bce_loss(d_outs[idx], labels))
                d_losses[idx] = d_losses[idx] / args.iter_size / 2
                d_losses[idx].backward()
                d_loss_vals[idx] += d_losses[idx].item()

            for idx in range(n_discriminators):
                stu_unsup_preds[idx] = stu_unsup_preds[idx].detach()
                d_outs[idx] = discriminators[idx](stu_unsup_preds[idx])

                label_size = d_outs[idx].data.size()
                labels = torch.FloatTensor(label_size).fill_(tgt_label)
                labels = Variable(labels).cuda(args.gpu)

                d_losses[idx] = calc_bce_loss(d_outs[idx], labels)
                d_losses[idx] = d_losses[idx] / args.iter_size / 2
                d_losses[idx].backward()
                d_loss_vals[idx] += d_losses[idx].item()

        for d_optimizer in d_optimizers:
            d_optimizer.step()

        total_loss = total_seg_loss + total_adv_loss + total_mse_loss
        total_loss.backward()
        student_optimizer.step()
        teacher_optimizer.step()

        log_str = 'iter = {0:7d}/{1:7d}'.format(i_iter, args.num_steps)
        log_str += ', total_seg_loss = {0:.3f} '.format(total_seg_loss)
        templ = 'seg_losses = [' + ', '.join(['%.2f'] * len(seg_loss_vals))
        log_str += templ % tuple(seg_loss_vals) + '] '
        templ = 'ens_losses = [' + ', '.join(['%.5f'] * len(unsup_loss_vals))
        log_str += templ % tuple(unsup_loss_vals) + '] '
        templ = 'adv_losses = [' + ', '.join(['%.2f'] * len(adv_tgt_loss_vals))
        log_str += templ % tuple(adv_tgt_loss_vals) + '] '
        templ = 'd_losses = [' + ', '.join(['%.2f'] * len(d_loss_vals))
        log_str += templ % tuple(d_loss_vals) + '] '

        print(log_str)
        if i_iter >= args.num_steps_stop - 1:
            print('save model ...')
            filename = 'UNet' + str(
                args.num_steps_stop) + '_v18_weightedclass.pth'
            torch.save(teacher_net.cpu().state_dict(),
                       os.path.join(args.snapshot_dir, filename))
            break

        if i_iter % args.save_pred_every == 0 and i_iter != 0:
            print('taking snapshot ...')
            filename = 'UNet' + str(i_iter) + '_v18_weightedclass.pth'
            torch.save(teacher_net.cpu().state_dict(),
                       os.path.join(args.snapshot_dir, filename))
            teacher_net.cuda(args.gpu)
Exemplo n.º 15
0
def evaluate_performance(args, gridargs, logger):
    '''
    -------------------------Hyperparameters--------------------------
    '''
    EPOCHS = args.epochs
    ITER = args.iterations  # per epoch
    LR = gridargs['lr']
    MOM = gridargs['mom']
    # LOGInterval = args.log_interval
    BATCHSIZE = args.batch_size
    NUMBER_OF_WORKERS = args.workers
    DATA_FOLDER = args.data
    ROOT = gridargs['run']
    CUSTOM_LOG_DIR = os.path.join(ROOT, "additionalLOGS")

    # check existance of data
    if not os.path.isdir(DATA_FOLDER):
        print("data folder not existant or in wrong layout.\n\t", DATA_FOLDER)
        exit(0)
    '''
    ---------------------------preparations---------------------------
    '''
    # CUDA for PyTorch
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda:0" if use_cuda else "cpu")
    print("using device: ", str(device))

    '''
    ---------------------------loading dataset and normalizing---------------------------
    '''
    # Dataloader Parameters
    train_params = {'batch_size': BATCHSIZE,
                    'shuffle': True,
                    'num_workers': NUMBER_OF_WORKERS}
    test_params = {'batch_size': BATCHSIZE,
                   'shuffle': False,
                   'num_workers': NUMBER_OF_WORKERS}

    # create a folder for the weights and custom logs
    if not os.path.isdir(CUSTOM_LOG_DIR):
        os.makedirs(CUSTOM_LOG_DIR)

    traindata = CONRADataset(DATA_FOLDER,
                             True,
                             device=device,
                             precompute=True,
                             transform=None)

    testdata = CONRADataset(DATA_FOLDER,
                            False,
                            device=device,
                            precompute=True,
                            transform=None)

    trainingset = DataLoader(traindata, **train_params)
    testset = DataLoader(testdata, **test_params)

    if args.model == "unet":
        m = UNet(2, 2).to(device)
    else:
        m = simpleConvNet(2, 2).to(device)

    o = optim.SGD(m.parameters(),
                  lr=LR,
                  momentum=MOM)

    loss_fn = nn.MSELoss()

    test_loss = None
    train_loss = None

    '''
    -----------------------------training-----------------------------
    '''
    global_step = 0
    # calculating initial loss
    if test_loss is None or train_loss is None:
        print("calculating initial loss")
        m.eval()
        print("testset...")
        test_loss = calculate_loss(set=testset, loss_fn=loss_fn, length_set=len(testdata), dev=device, model=m)
        print("trainset...")
        train_loss = calculate_loss(set=trainingset, loss_fn=loss_fn, length_set=len(traindata), dev=device, model=m)


    # printing runtime information
    print("starting training at {} for {} epochs {} iterations each\n\t{} total".format(0, EPOCHS, ITER, EPOCHS * ITER))

    print("\tbatchsize: {}\n\tloss: {}\n".format(BATCHSIZE, train_loss))
    print("\tmodel: {}\n\tlearningrate: {}\n\tmomentum: {}\n\tnorming output space: {}".format(args.model, LR, MOM, False))

    #start actual training loops
    for e in range(0, EPOCHS):
        # iterations will not be interupted with validation and metrics
        for i in range(ITER):
            global_step = (e * ITER) + i

            # training
            m.train()
            iteration_loss = 0
            for x, y in tqdm(trainingset):
                x, y = x.to(device=device, dtype=torch.float), y.to(device=device, dtype=torch.float)
                pred = m(x)
                loss = loss_fn(pred, y)
                iteration_loss += loss.item()
                o.zero_grad()
                loss.backward()
                o.step()
            print("\niteration {}: --accumulated loss {}".format(global_step, iteration_loss))
            if not np.isfinite(iteration_loss):
                print("EXPLODING OR VANISHING GRADIENT at lr: {} mom: {} step: {}".format(LR, MOM, global_step))
                return

        # validation, saving and logging
        print("\nvalidating")
        m.eval() # disable dropout batchnorm etc
        print("testset...")
        test_loss = calculate_loss(set=testset, loss_fn=loss_fn, length_set=len(testdata), dev=device, model=m)
        print("trainset...")
        train_loss = calculate_loss(set=trainingset, loss_fn=loss_fn, length_set=len(traindata), dev=device, model=m)

        print("calculating performace...")
        currSSIM, currR = performance(set=testset, dev=device, model=m, bs=BATCHSIZE)
        print("SSIM (iod/water): {}/{}\nR (iod/water): {}/{}".format(currSSIM[0], currSSIM[1], currR[0], currR[1]))
        #f.write("num, lr, mom, step, ssimIOD, ssimWAT, rIOD, rWAT, trainLOSS, testLOSS\n")
        with open(gridargs['stats'], 'a') as f:
            newCSVline = "{}, {}, {}, {}, {}, {}, {}, {}, {}, {}\n".format(gridargs['runnum'], LR,
                                                                           MOM, global_step,
                                                                           currSSIM[0], currSSIM[1],
                                                                           currR[0],    currR[1],
                                                                           train_loss,  test_loss)
            f.write(newCSVline)
            print("wrote new line to csv:\n\t{}".format(newCSVline))

        print("advanced metrics")
        with torch.no_grad():
            for x, y in testset:
                # x, y in shape[2,2,480,620] [b,c,h,w]
                x, y = x.to(device=device, dtype=torch.float), y.to(device=device, dtype=torch.float)
                pred = m(x)
                iod = pred.cpu().numpy()[0, 0, :, :]
                water = pred.cpu().numpy()[0, 1, :, :]
                gtiod = y.cpu().numpy()[0, 0, :, :]
                gtwater = y.cpu().numpy()[0, 1, :, :]

                IMAGE_LOG_DIR = os.path.join(CUSTOM_LOG_DIR, str(global_step))
                if not os.path.isdir(IMAGE_LOG_DIR):
                    os.makedirs(IMAGE_LOG_DIR)

                plt.imsave(os.path.join(IMAGE_LOG_DIR, 'iod' + str(global_step) + '.png'), iod, cmap='gray')
                plt.imsave(os.path.join(IMAGE_LOG_DIR, 'water' + str(global_step) + '.png'), water, cmap='gray')
                plt.imsave(os.path.join(IMAGE_LOG_DIR, 'gtiod' + str(global_step) + '.png'), gtiod, cmap='gray')
                plt.imsave(os.path.join(IMAGE_LOG_DIR, 'gtwater' + str(global_step) + '.png'), gtwater, cmap='gray')

                print("creating and saving profile plot at 240")
                fig2, (ax1, ax2) = plt.subplots(nrows=2,
                                                ncols=1)  # plot water and iodine in one plot
                ax1.plot(iod[240])
                ax1.plot(gtiod[240])
                ax1.title.set_text("iodine horizontal profile")
                ax1.set_ylabel("mm iodine")
                ax1.set_ylim([np.min(gtiod), np.max(gtiod)])
                print("max value in gtiod is {}".format(np.max(gtiod)))
                ax2.plot(water[240])
                ax2.plot(gtwater[240])
                ax2.title.set_text("water horizontal profile")
                ax2.set_ylabel("mm water")
                ax2.set_ylim([np.min(gtwater), np.max(gtwater)])

                plt.subplots_adjust(wspace=0.3)
                plt.savefig(os.path.join(IMAGE_LOG_DIR, 'ProfilePlots' + str(global_step) + '.png'))
                break

        if logger is not None and train_loss is not None:
            logger.add_scalar('test_loss', test_loss, global_step=global_step)
            logger.add_scalar('train_loss', train_loss, global_step=global_step)
            logger.add_image("iodine-prediction", iod.reshape(1, 480, 620), global_step=global_step)
            logger.add_image("ground-truth", gtiod.reshape(1, 480, 620), global_step=global_step)
            # logger.add_image("water-prediction", wat)
            print("\ttensorboard updated with test/train loss and a sample image")

    # saving final results
    CHECKPOINT = os.path.join(ROOT, "finalWeights.pt")
    print("saving upon exit")
    torch.save({
        'epoch': EPOCHS,
        'iterations': ITER,
        'model_state_dict': m.state_dict(),
        'optimizer_state_dict': o.state_dict(),
        'train_loss': train_loss,
        'test_loss': test_loss},
        CHECKPOINT)
    print('\tsaved progress to: ', CHECKPOINT)
    if logger is not None and train_loss is not None:
        logger.add_scalar('test_loss', test_loss, global_step=global_step)
        logger.add_scalar('train_loss', train_loss, global_step=global_step)
Exemplo n.º 16
0
def main():
    """Create the model and start the evaluation process."""

    args = get_arguments()

    gpu0 = args.gpu

    if not os.path.exists(args.save):
        os.makedirs(args.save)

    model = UNet(3, n_classes=args.num_classes)

    saved_state_dict = torch.load(args.restore_from)
    model.load_state_dict(saved_state_dict)

    model.cuda(gpu0)
    model.train()

    testloader = data.DataLoader(REFUGE(False,
                                        domain='REFUGE_TEST',
                                        is_transform=True),
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 pin_memory=True)

    if version.parse(torch.__version__) >= version.parse('0.4.0'):
        interp = nn.Upsample(size=(460, 460),
                             mode='bilinear',
                             align_corners=True)
    else:
        interp = nn.Upsample(size=(460, 460), mode='bilinear')

    for index, batch in enumerate(testloader):
        if index % 100 == 0:
            print('%d processd' % index)
        image, label, _, _, name = batch
        if args.model == 'Unet':
            _, _, _, _, output2 = model(
                Variable(image, volatile=True).cuda(gpu0))

            output = interp(output2).cpu().data.numpy()

        for idx, one_name in enumerate(name):
            pred = output[idx]
            pred = pred.transpose(1, 2, 0)
            pred = np.asarray(np.argmax(pred, axis=2), dtype=np.uint8)
            output_col = colorize_mask(pred)

            if is_polar:

                # plt.imshow(output_col)
                # plt.show()

                output_col = np.array(output_col)
                output_col[output_col == 0] = 0
                output_col[output_col == 1] = 128
                output_col[output_col == 2] = 255

                # plt.imshow(output_col)
                # plt.show()

                output_col = cv2.linearPolar(
                    rotate(output_col, 90),
                    (args.ROI_size / 2, args.ROI_size / 2), args.ROI_size / 2,
                    cv2.WARP_FILL_OUTLIERS + cv2.WARP_INVERSE_MAP)

                # plt.imshow(output_col)
                # plt.show()

                output_col = np.array(output_col * 255, dtype=np.uint8)
                output_col[output_col > 200] = 210
                output_col[output_col == 0] = 255
                output_col[output_col == 210] = 0
                output_col[(output_col > 0) & (output_col < 255)] = 128

                output_col = Image.fromarray(output_col)

                # plt.imshow(output_col)
                # plt.show()

            one_name = one_name.split('/')[-1]
            if len(one_name.split('_')) > 0:
                one_name = one_name[:-4]
            #pred.save('%s/%s.bmp' % (args.save, one_name))
            output_col = output_col.convert('L')

            print(output_col.size)
            output_col.save('%s/%s.bmp' % (args.save, one_name.split('.')[0]))
Exemplo n.º 17
0
def train(input_data_type,
          grade,
          seg_type,
          num_classes,
          batch_size,
          epochs,
          use_gpu,
          learning_rate,
          w_decay,
          pre_trained=False):
    logger.info('Start training using {} modal.'.format(input_data_type))
    model = UNet(4, 4, residual=True, expansion=2)

    criterion = nn.CrossEntropyLoss()

    optimizer = optim.Adam(params=model.parameters(),
                           lr=learning_rate,
                           weight_decay=w_decay)

    if pre_trained:
        checkpoint = torch.load(pre_trained_path, map_location=device)
        model.load_state_dict(checkpoint['model_state_dict'])

    if use_gpu:
        ts = time.time()
        model.to(device)

        print("Finish cuda loading, time elapsed {}".format(time.time() - ts))

    scheduler = lr_scheduler.StepLR(
        optimizer, step_size=step_size,
        gamma=gamma)  # decay LR by a factor of 0.5 every 5 epochs

    data_set, data_loader = get_dataset_dataloader(input_data_type,
                                                   seg_type,
                                                   batch_size,
                                                   grade=grade)

    since = time.time()
    best_model_wts = copy.deepcopy(model.state_dict())
    best_iou = 0.0

    epoch_loss = np.zeros((2, epochs))
    epoch_acc = np.zeros((2, epochs))
    epoch_class_acc = np.zeros((2, epochs))
    epoch_mean_iou = np.zeros((2, epochs))
    evaluator = Evaluator(num_classes)

    def term_int_handler(signal_num, frame):
        np.save(os.path.join(score_dir, 'epoch_accuracy'), epoch_acc)
        np.save(os.path.join(score_dir, 'epoch_mean_iou'), epoch_mean_iou)
        np.save(os.path.join(score_dir, 'epoch_loss'), epoch_loss)

        model.load_state_dict(best_model_wts)

        logger.info('Got terminated and saved model.state_dict')
        torch.save(model.state_dict(),
                   os.path.join(score_dir, 'terminated_model.pt'))
        torch.save(
            {
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict()
            }, os.path.join(score_dir, 'terminated_model.tar'))

        quit()

    signal.signal(signal.SIGINT, term_int_handler)
    signal.signal(signal.SIGTERM, term_int_handler)

    for epoch in range(epochs):
        logger.info('Epoch {}/{}'.format(epoch + 1, epochs))
        logger.info('-' * 28)

        for phase_ind, phase in enumerate(['train', 'val']):
            if phase == 'train':
                model.train()
                logger.info(phase)
            else:
                model.eval()
                logger.info(phase)

            evaluator.reset()
            running_loss = 0.0
            running_dice = 0.0

            for batch_ind, batch in enumerate(data_loader[phase]):
                imgs, targets = batch
                imgs = imgs.to(device)
                targets = targets.to(device)

                # zero the learnable parameters gradients
                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(imgs)
                    loss = criterion(outputs, targets)

                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                preds = torch.argmax(F.softmax(outputs, dim=1),
                                     dim=1,
                                     keepdim=True)
                running_loss += loss * imgs.size(0)
                logger.debug('Batch {} running loss: {:.4f}'.format(batch_ind,\
                    running_loss))

                # test the iou and pixelwise accuracy using evaluator
                preds = torch.squeeze(preds, dim=1)
                preds = preds.cpu().numpy()
                targets = targets.cpu().numpy()
                evaluator.add_batch(targets, preds)

            epoch_loss[phase_ind, epoch] = running_loss / len(data_set[phase])
            epoch_acc[phase_ind, epoch] = evaluator.Pixel_Accuracy()
            epoch_class_acc[phase_ind,
                            epoch] = evaluator.Pixel_Accuracy_Class()
            epoch_mean_iou[phase_ind,
                           epoch] = evaluator.Mean_Intersection_over_Union()

            logger.info('{} loss: {:.4f}, acc: {:.4f}, class acc: {:.4f}, mean iou: {:.6f}'.format(phase,\
                epoch_loss[phase_ind, epoch],\
                epoch_acc[phase_ind, epoch],\
                epoch_class_acc[phase_ind, epoch],\
                epoch_mean_iou[phase_ind, epoch]))

            if phase == 'val' and epoch_mean_iou[phase_ind, epoch] > best_iou:
                best_iou = epoch_mean_iou[phase_ind, epoch]
                best_model_wts = copy.deepcopy(model.state_dict())

            if phase == 'val' and (epoch + 1) % 10 == 0:
                logger.info('Saved model.state_dict in epoch {}'.format(epoch +
                                                                        1))
                torch.save(
                    model.state_dict(),
                    os.path.join(score_dir,
                                 'epoch{}_model.pt'.format(epoch + 1)))

        print()

    time_elapsed = time.time() - since
    logger.info('Training completed in {}m {}s'.format(int(time_elapsed / 60),\
        int(time_elapsed) % 60))

    # load best model weights
    model.load_state_dict(best_model_wts)

    # save numpy results
    np.save(os.path.join(score_dir, 'epoch_accuracy'), epoch_acc)
    np.save(os.path.join(score_dir, 'epoch_mean_iou'), epoch_mean_iou)
    np.save(os.path.join(score_dir, 'epoch_loss'), epoch_loss)

    return model, optimizer
Exemplo n.º 18
0
def train_UNet():
    cfg = UnetConfig()
    train_transform = transforms.Compose([
        GrayscaleNormalization(mean=0.5, std=0.5),
        RandomRotation(),
        RandomFlip(),
        ToTensor(),
    ])
    val_transform = transforms.Compose([
        GrayscaleNormalization(mean=0.5, std=0.5),
        ToTensor(),
    ])

    # Set Dataset
    train_dataset = Dataset(imgs_dir=TRAIN_IMGS_DIR,
                            labels_dir=TRAIN_LABELS_DIR,
                            transform=train_transform)
    train_loader = DataLoader(train_dataset,
                              batch_size=cfg.BATCH_SIZE,
                              shuffle=True,
                              num_workers=0)
    val_dataset = Dataset(imgs_dir=VAL_IMGS_DIR,
                          labels_dir=VAL_LABELS_DIR,
                          transform=val_transform)
    val_loader = DataLoader(val_dataset,
                            batch_size=cfg.BATCH_SIZE,
                            shuffle=False,
                            num_workers=0)

    train_data_num = len(train_dataset)
    val_data_num = len(val_dataset)

    train_batch_num = int(np.ceil(train_data_num / cfg.BATCH_SIZE))  # np.ceil
    val_batch_num = int(np.ceil(val_data_num / cfg.BATCH_SIZE))

    # Network
    net = UNet().to(device)
    print(count_parameters(net))
    # Loss Function
    loss_fn = nn.BCEWithLogitsLoss().to(device)

    # Optimizer
    optim = torch.optim.Adam(params=net.parameters(), lr=cfg.LEARNING_RATE)

    # Tensorboard
    # train_writer = SummaryWriter(log_dir=TRAIN_LOG_DIR)
    # val_writer = SummaryWriter(log_dir=VAL_LOG_DIR)

    # Training
    start_epoch = 0
    # Load Checkpoint File
    if os.listdir(os.path.join(CKPT_DIR, 'unet')):
        net, optim, start_epoch = load_net(ckpt_dir=os.path.join(
            CKPT_DIR, 'unet'),
                                           net=net,
                                           optim=optim)
    else:
        print('* Training from scratch')

    num_epochs = cfg.NUM_EPOCHS
    for epoch in range(start_epoch + 1, num_epochs + 1):
        net.train()
        train_loss_arr = list()

        for batch_idx, data in enumerate(train_loader, 1):
            # Forward Propagation
            img = data['img'].to(device)
            label = data['label'].to(device)

            output = net(img)

            # Backward Propagation
            optim.zero_grad()

            loss = loss_fn(output, label)
            loss.backward()

            optim.step()

            # Calc Loss Function
            train_loss_arr.append(loss.item())
            print_form = '[Train] | Epoch: {:0>4d} / {:0>4d} | Batch: {:0>4d} / {:0>4d} | Loss: {:.4f}'
            print(
                print_form.format(epoch, num_epochs, batch_idx,
                                  train_batch_num, train_loss_arr[-1]))

        train_loss_avg = np.mean(train_loss_arr)
        # train_writer.add_scalar(tag='loss', scalar_value=train_loss_avg, global_step=epoch)

        # Validation (No Back Propagation)
        with torch.no_grad():
            net.eval()  # Evaluation Mode
            val_loss_arr = list()

            for batch_idx, data in enumerate(val_loader, 1):
                # Forward Propagation
                img = data['img'].to(device)
                label = data['label'].to(device)

                output = net(img)

                # Calc Loss Function
                loss = loss_fn(output, label)
                val_loss_arr.append(loss.item())

                print_form = '[Validation] | Epoch: {:0>4d} / {:0>4d} | Batch: {:0>4d} / {:0>4d} | Loss: {:.4f}'
                print(
                    print_form.format(epoch, num_epochs, batch_idx,
                                      val_batch_num, val_loss_arr[-1]))

        val_loss_avg = np.mean(val_loss_arr)
        # val_writer.add_scalar(tag='loss', scalar_value=val_loss_avg, global_step=epoch)

        print_form = '[Epoch {:0>4d}] Training Avg Loss: {:.4f} | Validation Avg Loss: {:.4f}'
        print(print_form.format(epoch, train_loss_avg, val_loss_avg))
        if epoch % 10 == 0:
            save_net(ckpt_dir=os.path.join(CKPT_DIR, 'unet'),
                     net=net,
                     optim=optim,
                     epoch=epoch)
def main():
    parser = argparse.ArgumentParser(description="Train the model")
    parser.add_argument('-trainf', "--train-filepath", type=str, default=None, required=True,
                        help="training dataset filepath.")
    parser.add_argument('-validf', "--val-filepath", type=str, default=None,
                        help="validation dataset filepath.")
    parser.add_argument("--shuffle", action="store_true", default=False,
                        help="Shuffle the dataset")
    parser.add_argument("--load-weights", type=str, default=None,
                        help="load pretrained weights")
    parser.add_argument("--load-model", type=str, default=None,
                        help="load pretrained model, entire model (filepath, default: None)")

    parser.add_argument("--debug", action="store_true", default=False)
    parser.add_argument('--epochs', type=int, default=30,
                        help='number of epochs to train (default: 30)')
    parser.add_argument("--batch-size", type=int, default=32,
                        help="Batch size")

    parser.add_argument('--img-shape', type=str, default="(1,512,512)",
                        help='Image shape (default "(1,512,512)"')

    parser.add_argument("--num-cpu", type=int, default=10,
                        help="Number of CPUs to use in parallel for dataloader.")
    parser.add_argument('--cuda', type=int, default=0,
                        help='CUDA visible device (use CPU if -1, default: 0)')
    parser.add_argument('--cuda-non-deterministic', action='store_true', default=False,
                        help="sets flags for non-determinism when using CUDA (potentially fast)")

    parser.add_argument('-lr', type=float, default=0.0005,
                        help='Learning rate')
    parser.add_argument('--seed', type=int, default=0,
                        help='Seed (numpy and cuda if GPU is used.).')

    parser.add_argument('--log-dir', type=str, default=None,
                        help='Save the results/model weights/logs under the directory.')

    args = parser.parse_args()

    # TODO: support image reshape
    img_shape = tuple(map(int, args.img_shape.strip()[1:-1].split(",")))

    if args.log_dir:
        os.makedirs(args.log_dir, exist_ok=True)
        best_model_path = os.path.join(args.log_dir, "model_weights.pth")
    else:
        best_model_path = None

    if args.seed is not None:
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        if args.cuda >= 0:
            if args.cuda_non_deterministic:
                printBlue("Warning: using CUDA non-deterministc. Could be faster but results might not be reproducible.")
            else:
                printBlue("Using CUDA deterministc. Use --cuda-non-deterministic might accelerate the training a bit.")
            # Make CuDNN Determinist
            torch.backends.cudnn.deterministic = not args.cuda_non_deterministic

            # torch.cuda.manual_seed(args.seed)
            torch.cuda.manual_seed_all(args.seed)

    # TODO [OPT] enable multi-GPUs ?
    # https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html
    device = torch.device("cuda:{}".format(args.cuda) if torch.cuda.is_available()
                          and (args.cuda >= 0) else "cpu")

    # ================= Build dataloader =================
    # DataLoader
    # transform_normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
    #                                            std=[0.5, 0.5, 0.5])
    transform_normalize = transforms.Normalize(mean=[0.5],
                                               std=[0.5])

    # Warning: DO NOT use geometry transform (do it in the dataloader instead)
    data_transform = transforms.Compose([
        # transforms.ToPILImage(mode='F'), # mode='F' for one-channel image
        # transforms.Resize((256, 256)) # NO
        # transforms.RandomResizedCrop(256), # NO
        # transforms.RandomHorizontalFlip(p=0.5), # NO
        # WARNING, ISSUE: transforms.ColorJitter doesn't work with ToPILImage(mode='F').
        # Need custom data augmentation functions: TODO: DONE.
        # transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),

        # Use OpenCVRotation, OpenCVXXX, ... (our implementation)
        # OpenCVRotation((-10, 10)), # angles (in degree)
        transforms.ToTensor(),  # already done in the dataloader
        transform_normalize
    ])

    geo_transform = GeoCompose([
        OpenCVRotation(angles=(-10, 10),
                       scales=(0.9, 1.1),
                       centers=(-0.05, 0.05)),

        # TODO add more data augmentation here
    ])

    def worker_init_fn(worker_id):
        # WARNING spawn start method is used,
        # worker_init_fn cannot be an unpicklable object, e.g., a lambda function.
        # A work-around for issue #5059: https://github.com/pytorch/pytorch/issues/5059
        np.random.seed()

    data_loader_train = {'batch_size': args.batch_size,
                         'shuffle': args.shuffle,
                         'num_workers': args.num_cpu,
                         #   'sampler': balanced_sampler,
                         'drop_last': True,  # for GAN-like
                         'pin_memory': False,
                         'worker_init_fn': worker_init_fn,
                         }

    data_loader_valid = {'batch_size': args.batch_size,
                         'shuffle': False,
                         'num_workers': args.num_cpu,
                         'drop_last': False,
                         'pin_memory': False,
                         }

    train_set = LiTSDataset(args.train_filepath,
                            dtype=np.float32,
                            geometry_transform=geo_transform,  # TODO enable data augmentation
                            pixelwise_transform=data_transform,
                            )
    valid_set = LiTSDataset(args.val_filepath,
                            dtype=np.float32,
                            pixelwise_transform=data_transform,
                            )

    dataloader_train = torch.utils.data.DataLoader(train_set, **data_loader_train)
    dataloader_valid = torch.utils.data.DataLoader(valid_set, **data_loader_valid)
    # =================== Build model ===================
    # TODO: control the model by bash command

    if args.load_weights:
        model = UNet(in_ch=1,
                     out_ch=3,  # there are 3 classes: 0: background, 1: liver, 2: tumor
                     depth=4,
                     start_ch=32, # 64
                     inc_rate=2,
                     kernel_size=5, # 3 
                     padding=True,
                     batch_norm=True,
                     spec_norm=False,
                     dropout=0.5,
                     up_mode='upconv',
                     include_top=True,
                     include_last_act=False,
                     )
        printYellow(f"Loading pretrained weights from: {args.load_weights}...")
        model.load_state_dict(torch.load(args.load_weights))
        printYellow("+ Done.")
    elif args.load_model:
        # load entire model
        model = torch.load(args.load_model)
        printYellow("Successfully loaded pretrained model.")

    model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.95))  # TODO
    best_valid_loss = float('inf')
    # TODO TODO: add learning decay
    
    for epoch in range(args.epochs):
        for valid_mode, dataloader in enumerate([dataloader_train, dataloader_valid]):
            n_batch_per_epoch = len(dataloader)
            if args.debug:
                n_batch_per_epoch = 1

            # infinite dataloader allows several update per iteration (for special models e.g. GAN)
            dataloader = infinite_dataloader(dataloader)
            if valid_mode:
                printYellow("Switch to validation mode.")
                model.eval()
                prev_grad_mode = torch.is_grad_enabled()
                torch.set_grad_enabled(False)
            else:
                model.train()

            st = time.time()
            cum_loss = 0
            for iter_ind in range(n_batch_per_epoch):
                supplement_logs = ""
                # reset cumulated losses at the begining of each batch
                # loss_manager.reset_losses() # TODO: use torch.utils.tensorboard !!
                optimizer.zero_grad()

                img, msk = next(dataloader)
                img, msk = img.to(device), msk.to(device)

                # TODO this is ugly: convert dtype and convert the shape from (N, 1, 512, 512) to (N, 512, 512)
                msk = msk.to(torch.long).squeeze(1)

                msk_pred = model(img)  # shape (N, 3, 512, 512)

                # label_weights is determined according the liver_ratio & tumor_ratio
                # loss = CrossEntropyLoss(msk_pred, msk, label_weights=[1., 10., 100.], device=device)
                loss = DiceLoss(msk_pred, msk, label_weights=[1., 20., 50.], device=device)
                # loss = DiceLoss(msk_pred, msk, label_weights=[1., 20., 500.], device=device)

                if valid_mode:
                    pass
                else:
                    loss.backward()
                    optimizer.step()

                loss = loss.item()  # release
                cum_loss += loss
                if valid_mode:
                    print("\r--------(valid) {:.2%} Loss: {:.3f} (time: {:.1f}s) |supp: {}".format(
                        (iter_ind+1)/n_batch_per_epoch, cum_loss/(iter_ind+1), time.time()-st, supplement_logs), end="")
                else:
                    print("\rEpoch: {:3}/{} {:.2%} Loss: {:.3f} (time: {:.1f}s) |supp: {}".format(
                        (epoch+1), args.epochs, (iter_ind+1)/n_batch_per_epoch, cum_loss/(iter_ind+1), time.time()-st, supplement_logs), end="")
            print()
            if valid_mode:
                torch.set_grad_enabled(prev_grad_mode)

        valid_mean_loss = cum_loss/(iter_ind+1)  # validation (mean) loss of the current epoch

        if best_model_path and (valid_mean_loss < best_valid_loss):
            printGreen("Valid loss decreases from {:.5f} to {:.5f}, saving best model.".format(
                best_valid_loss, valid_mean_loss))
            best_valid_loss = valid_mean_loss
            # Only need to save the weights
            # torch.save(model.state_dict(), best_model_path)
            # save the entire model
            torch.save(model, best_model_path)

    return best_valid_loss
Exemplo n.º 20
0
train_loss_seg_a = []
train_loss_seg_b = []

train_dice = []
val_loss_a = []
val_dice_a = []
val_loss_b = []
val_dice_b = []

for e in range(epochs):
    epoch_train_loss_rec = []
    epoch_train_loss_seg = []

    dice_scores = []
    net.train()
    pseudo.train()

    print('Epoch ', e)

    for i, data in enumerate(tqdm.tqdm(train_loader)):
        iteration += batch_size

        optimiser_ps.zero_grad()
        optimiser_net.zero_grad()

        # either train pseudolabeller or the net
        # first 10 epochs train the pseudo labeller on edges
        if e < epochs_pseudo:
            edges_a = data['A'][2].cuda()
            target_a = data['A'][1].cuda()