Exemplo n.º 1
0
def build_model(args):
    # model = ResNet32(args.dataset == 'cifar10' and 10 or 100)
    model = WideResNet(args.layers,
                       args.dataset == 'cifar10' and 10 or 100,
                       args.widen_factor,
                       dropRate=args.droprate)
    # weights_init(model)

    # print('Number of model parameters: {}'.format(
    #     sum([p.data.nelement() for p in model.params()])))

    if torch.cuda.is_available():
        model.cuda()
        torch.backends.cudnn.benchmark = True

    return model
Exemplo n.º 2
0
    cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10).cuda()
elif args.model == 'wideresnet16_8':
    cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8).cuda()
elif args.model == 'densenet':
    cnn = DenseNet3(depth=100,
                    num_classes=num_classes,
                    growth_rate=12,
                    reduction=0.5).cuda()
elif args.model == 'vgg13':
    cnn = VGG(vgg_name='VGG13', num_classes=num_classes).cuda()

model_dict = cnn.state_dict()

pretrained_dict = torch.load('checkpoints/' + filename + '.pt')
cnn.load_state_dict(pretrained_dict)
cnn = cnn.cuda()

cnn.eval()

#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Evaluate関数
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


def evaluate(data_loader, mode):
    out = []
    xent = nn.CrossEntropyLoss()
    for data in data_loader:
        if type(data) == list:
            images, labels = data
        else:
def main():
    global args, best_prec1
    args = parser.parse_args()
    # torch.cuda.set_device(args.gpu)
    if args.tensorboard:
        print("Using tensorboard")
        configure("exp/%s" % (args.name))

    # Data loading code

    if args.augment:
        print(
            "Doing image augmentation with\n"
            "Zoom: prob: {zoom_prob}  range: {zoom_range}\n"
            "Stretch: prob: {stretch_prob} range: {stretch_range}\n"
            "Rotation: prob: {rotation_prob} range: {rotation_degree}".format(
                zoom_prob=args.zoom_prob,
                zoom_range=args.zoom_range,
                stretch_prob=args.stretch_prob,
                stretch_range=args.stretch_range,
                rotation_prob=args.rotation_prob,
                rotation_degree=args.rotation_degree))
        transform_train = transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: F.pad(
                Variable(x.unsqueeze(0), requires_grad=False, volatile=True),
                (4, 4, 4, 4),
                mode='replicate').data.squeeze()),
            transforms.ToPILImage(),
            transforms.RandomCrop(32),
            transforms.RandomHorizontalFlip(),
            transforms.RandomRotation(prob=args.rotation_prob,
                                      degree=args.rotation_degree),
            transforms.RandomZoom(prob=args.zoom_prob,
                                  zoom_range=args.zoom_range),
            transforms.RandomStretch(prob=args.stretch_prob,
                                     stretch_range=args.stretch_range),
            transforms.ToTensor(),
        ])

    else:
        transform_train = transforms.Compose([
            transforms.ToTensor(),
        ])
    transform_test = transforms.Compose([
        transforms.ToTensor(),
    ])

    kwargs = {'num_workers': 1, 'pin_memory': True}
    assert (args.dataset == 'cifar10' or args.dataset == 'cifar100')
    train_loader = torch.utils.data.DataLoader(
        datasets.__dict__[args.dataset.upper()]('../data',
                                                train=True,
                                                download=True,
                                                transform=transform_train),
        batch_size=args.batch_size,
        shuffle=True,
        **kwargs)
    val_loader = torch.utils.data.DataLoader(
        datasets.__dict__[args.dataset.upper()]('../data',
                                                train=False,
                                                transform=transform_test),
        batch_size=args.batch_size,
        shuffle=True,
        **kwargs)

    # create model
    model = WideResNet(args.layers,
                       args.dataset == 'cifar10' and 10 or 100,
                       args.widen_factor,
                       dropRate=args.droprate)

    # get the number of model parameters
    print('Number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))

    # for training on multiple GPUs.
    # Use CUDA_VISIBLE_DEVICES=0,1 to specify which GPUs to use
    # model = torch.nn.DataParallel(model).cuda()
    model = model.cuda()

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                nesterov=args.nesterov,
                                weight_decay=args.weight_decay)

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch + 1)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion, epoch)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
            }, is_best)
    print 'Best accuracy: ', best_prec1