Exemplo n.º 1
0
def build_model(hparams):
    tf.reset_default_graph()
    if hparams.model == 'fm':
        model = fm.Model(hparams)
    elif hparams.model == 'ffm':
        model = ffm.Model(hparams)
    elif hparams.model == 'nffm':
        model = nffm.Model(hparams)
    elif hparams.model == 'xdeepfm':
        model = xdeepfm.Model(hparams)
    elif hparams.model == 'deepFM':
        model = deepFM.Model(hparams)
    elif hparams.model == 'DCN':
        model = DCN.Model(hparams)
    elif hparams.model == 'AFM':
        model = AFM.Model(hparams)

    config_proto = tf.ConfigProto(log_device_placement=0,
                                  allow_soft_placement=0)
    config_proto.gpu_options.allow_growth = True
    sess = tf.Session(config=config_proto)
    sess.run(tf.global_variables_initializer())
    model.set_Session(sess)

    return model
def build_model(hparams):
    tf.reset_default_graph()
    if hparams.model == 'fm':
        model = fm.Model(hparams)
    elif hparams.model == 'ffm':
        model = ffm.Model(hparams)
    elif hparams.model == 'nffm':
        model = nffm.Model(hparams)
    elif hparams.model == 'xdeepfm':
        model = xdeepfm.Model(hparams)
    config_proto = tf.ConfigProto(log_device_placement=0,
                                  allow_soft_placement=0)
    config_proto.gpu_options.allow_growth = True
    sess = tf.Session(config=config_proto)
    sess.run(tf.global_variables_initializer())
    # writer = tf.summary.FileWriter("D://DeepLearning//Tensorflow//ctrNet-tool-master//graph-1",sess.graph)
    # writer.close()
    model.set_Session(sess)

    return model