Exemplo n.º 1
0
def dust_model(DUST_I=50,
               DUST_Q=10 / 1.41,
               DUST_U=10 / 1.41,
               DUST_BETA=1.6,
               DUST_T=20.):
    dust_model = models.DustMBB(amp_I=rj2cmb(353e9, DUST_I),
                                amp_Q=rj2cmb(353e9, DUST_Q),
                                amp_U=rj2cmb(353e9, DUST_U),
                                dust_beta=DUST_BETA,
                                dust_T=DUST_T)
    return dust_model
Exemplo n.º 2
0
"""

# Band parameter definitions
nbands = 5
NPROC = 1 #4 #32
filename = "bands_log_%d.dat" % nbands
numin_vals = [5., ] #10., 20., 30., 40., 50., 60., 70.]
numax_vals = [200.,] # 300., 400., 500., 600., 700.]


models_fit = np.array(['mbb', 'pow'])
fsigma_T = 0.01
fsigma_P = 0.01

# Define input models and their amplitudes/parameters
dust_model = models.DustMBB(amp_I=10., amp_Q=1., amp_U=1.2, dust_beta=1.6, dust_T=20.)
sync_model = models.SyncPow(amp_I=10., amp_Q=2., amp_U=1.5, sync_beta=-3.)
cmb_model = models.CMB(amp_I=100., amp_Q=10., amp_U=20.)

mods = [dust_model, sync_model, cmb_model]
models_in = [dust_model.model, sync_model.model]
amps_in = np.array([m.amps() for m in mods])
params_in = np.array([m.params() for m in mods])


def bands_log(nu_min, nu_max, nbands):
    """
    Logarithmic set of bands.
    """
    freq_vec = np.arange(nbands)
    return nu_min * (nu_max/nu_min)**(freq_vec/(nbands-1.)) * 1e9 # in Hz
Exemplo n.º 3
0
import models
from utils import rj2cmb

DUST_I = 50.
DUST_P = 5. / 1.41

# Define input models and their amplitudes/parameters
dust_model = models.DustMBB( amp_I=rj2cmb(353e9, DUST_I),
                             amp_Q=rj2cmb(353e9, DUST_P),
                             amp_U=rj2cmb(353e9, DUST_P),
                             dust_beta=1.6, dust_T=20. )

prob1mbb_model = models.ProbSingleMBB( amp_I=rj2cmb(353e9, DUST_I),
                             amp_Q=rj2cmb(353e9, DUST_P),
                             amp_U=rj2cmb(353e9, DUST_P),
                             dust_beta=1.6, dust_T=20.,
                             sigma_beta=.2, sigma_temp=4. )

simple_dust_model = models.DustSimpleMBB( amp_I=rj2cmb(353e9, DUST_I),
                             amp_Q=rj2cmb(353e9, DUST_P),
                             amp_U=rj2cmb(353e9, DUST_P),
                             dust_beta=1.6, dust_T=20. )

simple_dust_model_shifted = models.DustSimpleMBB(
                             amp_I=rj2cmb(353e9, DUST_I),
                             amp_Q=rj2cmb(353e9, DUST_P),
                             amp_U=rj2cmb(353e9, DUST_P),
                             dust_beta=1.7, dust_T=20. )

ame_model = models.AMEModel( amp_I=rj2cmb(30e9, 30.),
Exemplo n.º 4
0
numin_vals = [15., 20., 25., 30., 35., 40.]
numax_vals = [300., 400., 500., 600., 700., 800.]
#numin_vals = [5., 10., 20., 30., 40., 50., 60., 70.]
#numax_vals = [200., 300., 400., 500., 600., 700.]
#numin_vals = [5., ] #10., 20., 30., 40., 50., 60., 70.]
#numax_vals = [700.,] # 300., 400., 500., 600., 700.]

# Temperature/polarisation noise rms for all bands, as a fraction of T_cmb
fsigma_T = 1. #0.01
fsigma_P = 2. #0.01

# Define input models and their amplitudes/parameters
#dust_model = models.DustMBB(amp_I=150., amp_Q=10., amp_U=10., dust_beta=1.6, dust_T=20.)
dust_model = models.DustMBB( amp_I=rj2cmb(353e9, 150.), 
                             amp_Q=rj2cmb(353e9, 10.), 
                             amp_U=rj2cmb(353e9, 10.), 
                             dust_beta=1.6, dust_T=20. )
sync_model = models.SyncPow( amp_I=30., amp_Q=10., amp_U=10., sync_beta=-3.2 )
cmb_model = models.CMB( amp_I=50., amp_Q=0.6, amp_U=0.6 )

name_in = "MBBSync"
#name_in = "SimpleMBBSync"
mods_in = [cmb_model, dust_model, sync_model]
#mods_in = [sync_model, cmb_model]
amps_in = np.array([m.amps() for m in mods_in])
params_in = np.array([m.params() for m in mods_in])

# Define models to use for the fitting
name_fit = "MBBSync"
#name_fit = "SimpleMBBSync"
mods_fit = [cmb_model, dust_model, sync_model]