Exemplo n.º 1
0
def create_net(model, img_prep, img_aug, learning_rate):
    if model == "alex":
        network = alexNet(img_prep, img_aug, learning_rate)
    elif model == "vgg":
        network = vggNet(img_prep, img_aug, learning_rate)
    elif model == "res":
        network = resNet(img_prep, img_aug, learning_rate)
    elif model == "alch11":
        network = alchNet11(img_prep, img_aug, learning_rate)
    elif model == "alch11_without_dropout":
        network = alchNet11(img_prep, img_aug, learning_rate, 0)
    else:
        network = alchNet19(img_prep, img_aug, learning_rate)
    return network
Exemplo n.º 2
0
def create_net(model, img_prep, img_aug, learning_rate):
    if model == "alex":
        network = alexNet(img_prep, img_aug, learning_rate)
    elif model == "vgg":
        network = vggNet(img_prep, img_aug, learning_rate)
    elif model == "vggtop5":
        network = vggNetTop5(img_prep, img_aug, learning_rate)
    elif model == "vgg13":
        network = vggNet13(img_prep, img_aug, learning_rate)
    elif model == "vgg16":
        network = vggNet16(img_prep, img_aug, learning_rate)
    elif model == "res":
        network = resNet(img_prep, img_aug, learning_rate)
    elif model == "alch11":
        network = alchNet11(img_prep, img_aug, learning_rate)
    elif model == "alch11_without_dropout":
        network = alchNet11(img_prep, img_aug, learning_rate, 0)
    elif model == "alch_enhance":
        network = alchNetEnhance(img_prep, img_aug, learning_rate)
    else:
        network = alchNet19(img_prep, img_aug, learning_rate)
    return network
Exemplo n.º 3
0
                                              batch_size=batch_size,
                                              n_channels=1,
                                              n_classes=n_classes,
                                              shuffle=True)

    validation_generator = volume.DataGenerator(validationlistIDs,
                                                validationdataDir,
                                                v_size=sideLength,
                                                batch_size=batch_size,
                                                n_channels=1,
                                                n_classes=n_classes,
                                                shuffle=True)

    ##------------------------------ Model ---------------------------------------##
    #Create
    model = models.alexNet(sideLength)
    model.summary()

    #Track accuracy and loss in real-time
    #if jupyter notebook:
    log_dir = "/media/data_crypt_2/alexNet" + datetime.datetime.now().strftime(
        "%Y-%m-%d_%H:%M:%S")
    file_writer = tf.summary.create_file_writer(log_dir + "/metrics")
    file_writer.set_as_default()

    #python script
    saving_path = log_dir
    if not os.path.isdir(saving_path):
        os.mkdir(saving_path)
    saving_path = os.path.join(saving_path, 'metricsHistory')
    if not os.path.isdir(saving_path):
Exemplo n.º 4
0
    ]

    epochs = [i for i in range(1, 51)]  #CHANGE THIS

    a = len(testinglistIDs)
    print('total of {} testing images'.format(a))
    step = math.ceil(a / 16)

    batch_size = 128  #CHANGE THIS
    sideLength = 96  #CHANGE THIS

    test_generator = testDataGenerator(testinglistIDs,
                                       testDir,
                                       batch_size=batch_size,
                                       v_size=sideLength)
    model = models.alexNet(sideLength)  #CHANGE THIS

    for epoch in epochs:
        model.load_weights(
            "/data/resized_FPR/models/improved_res_alex_aug/2021-02-16_11:57:24/checkpoints/alex_aug_{}.hd5f"
            .format(str(epoch).zfill(2)))  #CHANGE THIS
        opt = SGD()
        model.compile(optimizer=opt,
                      loss='binary_crossentropy',
                      metrics=['accuracy'])  #CHANGE THIS (OPTIMIZER)
        prediction = model.evaluate(test_generator, verbose=1)

        savePath = '/data/resized_FPR/models/improved_res_alex_aug/2021-02-16_11:57:24/evaluation'  #CHANGE THIS
        if not os.path.isdir(savePath): os.mkdir(savePath)
        with open(os.path.join(savePath, 'eval_epoch{}.txt'.format(epoch)),
                  'w+') as f:
Exemplo n.º 5
0
    if model == 'res18conv':
        # ResNet18 Conv
        model, criterion, optimizer, scheduler = models.resNet18_conv()
        model_conv = fit(model, criterion, optimizer, scheduler, num_epochs=30)
        predict(model_conv)

    if model == 'res152conv':
        # ResNet152 Conv
        model, criterion, optimizer, scheduler = models.resNet152_conv()
        model_conv = fit(model, criterion, optimizer, scheduler, num_epochs=30)
        predict(model_conv)

    if model == 'dense161':
        # DenseNet161
        model, criterion, optimizer, scheduler = models.denseNet161_ft()
        model_ft = fit(model, criterion, optimizer, scheduler, num_epochs=30)
        predict(model_ft)

    if model == 'vgg19':
        # VGG 19-layer model
        model, criterion, optimizer, scheduler = models.vgg19()
        model_ft = fit(model, criterion, optimizer, scheduler, num_epochs=30)
        predict(model_ft)

    if model == 'alex':
        # AlexNet
        model, criterion, optimizer, scheduler = models.alexNet()
        model_ft = fit(model, criterion, optimizer, scheduler, num_epochs=30)
        predict(model_ft)