Exemplo n.º 1
0
def search_valid(xloader, network, criterion, extra_info, print_freq, logger):
    data_time, batch_time, losses, top1, top5 = (
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
        AverageMeter(),
    )

    network.eval()
    network.apply(change_key("search_mode", "search"))
    end = time.time()
    # logger.log('Starting evaluating {:}'.format(epoch_info))
    with torch.no_grad():
        for i, (inputs, targets) in enumerate(xloader):
            # measure data loading time
            data_time.update(time.time() - end)
            # calculate prediction and loss
            targets = targets.cuda(non_blocking=True)

            logits, expected_flop = network(inputs)
            loss = criterion(logits, targets)
            # record
            prec1, prec5 = obtain_accuracy(logits.data,
                                           targets.data,
                                           topk=(1, 5))
            losses.update(loss.item(), inputs.size(0))
            top1.update(prec1.item(), inputs.size(0))
            top5.update(prec5.item(), inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % print_freq == 0 or (i + 1) == len(xloader):
                Sstr = ("**VALID** " + time_string() +
                        " [{:}][{:03d}/{:03d}]".format(extra_info, i,
                                                       len(xloader)))
                Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
                    batch_time=batch_time, data_time=data_time)
                Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
                    loss=losses, top1=top1, top5=top5)
                Istr = "Size={:}".format(list(inputs.size()))
                logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr)

    logger.log(
        " **VALID** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}"
        .format(
            top1=top1,
            top5=top5,
            error1=100 - top1.avg,
            error5=100 - top5.avg,
            loss=losses.avg,
        ))

    return losses.avg, top1.avg, top5.avg
Exemplo n.º 2
0
def search_train(search_loader, network, criterion, scheduler, base_optimizer,
                 arch_optimizer, optim_config, extra_info, print_freq, logger):
    data_time, batch_time = AverageMeter(), AverageMeter()
    base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(
    ), AverageMeter(), AverageMeter()
    arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter()
    epoch_str, flop_need, flop_weight, flop_tolerant = extra_info[
        'epoch-str'], extra_info['FLOP-exp'], extra_info[
            'FLOP-weight'], extra_info['FLOP-tolerant']

    network.train()
    logger.log(
        '[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}'.format(
            epoch_str, flop_need, flop_weight))
    end = time.time()
    network.apply(change_key('search_mode', 'search'))
    for step, (base_inputs, base_targets, arch_inputs,
               arch_targets) in enumerate(search_loader):
        scheduler.update(None, 1.0 * step / len(search_loader))
        # calculate prediction and loss
        base_targets = base_targets.cuda(non_blocking=True)
        arch_targets = arch_targets.cuda(non_blocking=True)
        # measure data loading time
        data_time.update(time.time() - end)

        # update the weights
        base_optimizer.zero_grad()
        logits, expected_flop = network(base_inputs)
        # network.apply( change_key('search_mode', 'basic') )
        # features, logits = network(base_inputs)
        base_loss = criterion(logits, base_targets)
        base_loss.backward()
        base_optimizer.step()
        # record
        prec1, prec5 = obtain_accuracy(logits.data,
                                       base_targets.data,
                                       topk=(1, 5))
        base_losses.update(base_loss.item(), base_inputs.size(0))
        top1.update(prec1.item(), base_inputs.size(0))
        top5.update(prec5.item(), base_inputs.size(0))

        # update the architecture
        arch_optimizer.zero_grad()
        logits, expected_flop = network(arch_inputs)
        flop_cur = network.module.get_flop('genotype', None, None)
        flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur,
                                                   flop_need, flop_tolerant)
        acls_loss = criterion(logits, arch_targets)
        arch_loss = acls_loss + flop_loss * flop_weight
        arch_loss.backward()
        arch_optimizer.step()

        # record
        arch_losses.update(arch_loss.item(), arch_inputs.size(0))
        arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0))
        arch_cls_losses.update(acls_loss.item(), arch_inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        if step % print_freq == 0 or (step + 1) == len(search_loader):
            Sstr = '**TRAIN** ' + time_string(
            ) + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step,
                                               len(search_loader))
            Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(
                batch_time=batch_time, data_time=data_time)
            Lstr = 'Base-Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(
                loss=base_losses, top1=top1, top5=top5)
            Vstr = 'Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})'.format(
                aloss=arch_cls_losses,
                floss=arch_flop_losses,
                loss=arch_losses)
            logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr)
            # Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size()))
            # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr)
            # print(network.module.get_arch_info())
            # print(network.module.width_attentions[0])
            # print(network.module.width_attentions[1])

    logger.log(
        ' **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}'
        .format(top1=top1,
                top5=top5,
                error1=100 - top1.avg,
                error5=100 - top5.avg,
                baseloss=base_losses.avg,
                archloss=arch_losses.avg))
    return base_losses.avg, arch_losses.avg, top1.avg, top5.avg