def post(self, request_id): user = users.get_current_user() request = models.read(request_id) for q in request.questions: feedback = self.request.POST.get(q) if not feedback: continue saved_feedback = models.feedback(user, request, q, feedback) saved_feedback.feedback = feedback saved_feedback.put() return webapp2.redirect('/request/{0}?status=saved'.format(request_id))
def api_put(request): """ 响应PUT """ data = request_util.get_fields_to_be_save(request) feedback = app_models.feedback(**data) feedback.save() error_msg = None data = json.loads(feedback.to_json()) data['id'] = data['_id']['$oid'] if error_msg: data['error_msg'] = error_msg response = create_response(200) response.data = data return response.get_response()
def addfeedback(request): res = {'code': 1, 'message': ''} try: uid = request.GET['uid'] txt = request.GET['txt'] except: return HttpResponse(json.dumps(res)) #if True: try: feed = feedback() feed.uid = uid feed.txt = txt feed.save() #else: except: return HttpResponse(json.dumps(res)) res['code'] = 0 res['message'] = 'ok' return HttpResponse(json.dumps(res))
def addfeedback(request): res={'code':1,'message':''} try: uid=request.GET['uid'] txt=request.GET['txt'] except: return HttpResponse(json.dumps(res)) #if True: try: feed=feedback() feed.uid=uid feed.txt=txt feed.save() #else: except: return HttpResponse(json.dumps(res)) res['code']=0 res['message']='ok' return HttpResponse(json.dumps(res))
score = raw_input('Enter target score:') threshold = raw_input( 'Enter threshold for word importance:') input_scale = raw_input( 'Choose 1 for 0-1 scale, 2 for 0-5 scale:') if int(input_scale) == 1: score = float(score) * 5 testSet = [[goldA], [studA], [float(score)]] result = app.test(usedModels, classifier, testSet) # Covert result into required grading scale. result = post_process(result) print result #feedback_model.build_vocab([sentA, sentB], tokenize=True) keywords = models.feedback(feedm.feedback_model, goldA, float(threshold)) #print 'keywords:', keywords sent = nltk.word_tokenize(studA) sent = [word.lower() for word in sent] #print 'sent', sent feedback = set(keywords) - set(sent) - set(['<s>', '</s>']) print 'Hey there, you missed following keywords:\n', list( feedback) elif BATCH_MODE: input_path = raw_input( 'Enter the complete file path for test data. \n') trainSet, devSet, testSet = app.load_data_nosplit( input_path) result = app.test([feedm, fbm], classifier, testSet) result = post_process(result)