Exemplo n.º 1
0
def fig4(name, func, eps):
    """Makes figure 4.

    Args:
        name (str): Descriptive name of the model. Posterior samples, statistics, and
            figures are generated and saved in a subdirectory with this name.
        func (:obj:`<class 'function'>): Function for model construction. Should
            return a formatted copy of the data.
        eps (bool): If True, saves the figures to the manuscript subdirectory in .eps
            format.

    """

    with pm.Model() as m:

        fit_model(name, func)
        trace = pm.load_trace(name)
        params = sorted(
            [p.name for p in m.deterministics if "Lambda" in p.name])

    set_fig_defaults()
    rcParams["figure.figsize"] = (3, 3 * 2)
    fig, axes = plt.subplots(5, 1, constrained_layout=True)

    for p, ax in zip(params, axes):

        vals, bins, _ = ax.hist(trace[p],
                                bins=50,
                                density=True,
                                histtype="step",
                                color="lightgray")
        ax.set_xlabel(p)
        if ax == axes[0]:
            ax.set_ylabel("Posterior density")

        start, stop = pm.stats.hpd(trace[p])
        for n, l, r in zip(vals, bins, bins[1:]):

            if l > start:
                if r < stop:
                    ax.fill_between([l, r], 0, [n, n], color="lightgray")
                elif l < stop < r:
                    ax.fill_between([l, stop], 0, [n, n], color="lightgray")
            elif l < start < r:
                ax.fill_between([start, r], 0, [n, n], color="lightgray")

        x = np.linspace(min([bins[0], 0]), max([0, bins[-1]]))
        theta = skewnorm.fit(trace[p])
        ax.plot(x, skewnorm.pdf(x, *theta), "k", label="Normal approx.")
        ax.plot(x, norm.pdf(x), "k--", label="Prior")
        ax.plot([0, 0], [skewnorm.pdf(0, *theta), norm.pdf(0)], "ko")

    fig.savefig(f"{name}/fig4.png")

    if eps is True:
        fig.savefig("manuscript/fig4.eps")
Exemplo n.º 2
0
def table3(name, func, tex):
    """Makes table 3.

    Args:
        name (str): Descriptive name of the model. Posterior samples, statistics, and
            figures are generated and saved in a subdirectory with this name.
        func (:obj:`<class 'function'>): Function for model construction. Should
            return a formatted copy of the data.
        tex (bool): If True, saves the table to the manuscript subdirectory.

    """
    with pm.Model():
        data = fit_model(name, func)

    df = data.groupby(["listener", "condition"])[list("abdls")].mean().reset_index()
    df = df.pivot(
        index="listener", columns="condition", values=list("abdls")
    ).reset_index()
    # df = df.T.sort_values(["condition"]).T.set_index("listener")
    df = df.set_index("listener")
    df.loc["Group mean"] = df.mean(axis=0)

    df = df.applymap(latexify)
    df.to_latex(f"{name}/table3.tex", escape=False)

    if tex is True:
        df.to_latex("manuscript/table3.tex", escape=False)
Exemplo n.º 3
0
def table2(name, func, tex):
    """Makes table 2.

    Args:
        name (str): Descriptive name of the model. Posterior samples, statistics, and
            figures are generated and saved in a subdirectory with this name.
        func (:obj:`<class 'function'>): Function for model construction. Should
            return a formatted copy of the data.
        tex (bool): If True, saves the table to the manuscript subdirectory.

    """

    with pm.Model() as m:
        fit_model(name, func)
        trace = pm.load_trace(name)
        params = sorted([p.name for p in m.deterministics if "Lambda" in p.name])
        df = pm.summary(trace, var_names=params)

    table = []
    for p, i in zip(params, interps):

            theta = skewnorm.fit(trace[p])
            p0 = norm.pdf(0)
            p1 = skewnorm.pdf(0, *theta)
            bf = p0 / p1
            a, b, c = df.loc[p, ["mean", "hpd_2.5", "hpd_97.5"]]

            dic = {
                "Variable": p,
                "Posterior mean (95% HPD)": "%s (%s, %s)" % (
                    latexify(a), latexify(b), latexify(c)),
                "During roved-frequency trials ...": i,
                "BF": latexify(bf),
                "Evidence": interpret(bf),
            }
            table.append(dic)
            # print(p, bf)

    df = pd.DataFrame(table)[dic.keys()]
    df.to_latex(f"{name}/table2.tex", escape=False, index=False)

    if tex is True:
        df.to_latex("manuscript/table2.tex", escape=False, index=False)
Exemplo n.º 4
0
def main():

    print("performing all analyses for the 'perceptual anchors' paper")
    started = time()

    details = [
        ("modela", modela, True), ("modelb", modelb, False)
    ]

    if not exists("manuscript"):
        makedirs("manuscript")

    for name, func, eps in details[:]:

        print("fitting or loading model ... ", end="")
        data = fit_model(name, func)
        print(f"done in {time() - started:.2f} s")

        print("creating figs 1 and 2 ... ", end="")
        fig12(data, name, eps)
        print(f"done in {time() - started:.2f} s")

        print("creating fig 3 ... ", end="")
        fig3(data, name, eps)
        print(f"done in {time() - started:.2f} s")

        print("creating fig 4 ... ", end="")
        fig4(name, func, eps)
        print(f"done in {time() - started:.2f} s")

        print("creating table 2 ... ", end="")
        table2(name, func, eps)
        print(f"done in {time() - started:.2f} s")

        print("creating table 3 ... ", end="")
        table3(name, func, eps)
        print(f"done in {time() - started:.2f} s")
Exemplo n.º 5
0
raw_x, raw_y = load_training_data('data/raw_maps.npz')
x_train, x_test, y_train, y_test, _, _ = train_test_split(raw_x, raw_y, raw_y)

denses = [5, 20, 50, 100]
neofs = range(1, 30)
epochs = 1000

for hidden_layer_neurons in denses:
    model = dense_model(raw_x,
                        raw_y,
                        hidden_layer_neurons=hidden_layer_neurons,
                        name='dense_%i_trained_on_raw_maps' %
                        hidden_layer_neurons,
                        optimizer=optimizers.Adam(learning_rate=0.004))

    fit_model(x_train, x_test, y_train, y_test, model, epochs=epochs)

model = conv_model(raw_x,
                   raw_y,
                   name='conv_trained_on_raw_maps',
                   optimizer=optimizers.Adam(learning_rate=0.004))
fit_model(x_train, x_test, y_train, y_test, model, epochs=epochs)

for n in neofs:
    x, y, pcs, eofs = load_reconstructed_training_data(
        'data/reconstructed_maps(neofs=%i).npz' % n)
    x_train, x_test, y_train, y_test, real_train, real_test = train_test_split(
        x, y, raw_y)

    for hidden_layer_neurons in denses:
        model = dense_model(
Exemplo n.º 6
0
class_train = class_train
class_test = class_test

hyperpars = {
    'drop_rate': 0.4,
    'learning_rate': 0.0001,
    'dense_size': 64,
    "conv_filters": [16, 32],
    'batch_size': 512,
    "epochs": 25
}

pos = 0
cnn = models.CNN(im.shape, 3, hyperpars, name="colour")
cnn.build_layers()
models.fit_model(
    cnn, [img_train, class_train[:, pos], img_test, class_test[:, pos]])
del cnn

# exit(0)
# hyperpars['dense_size'] = 128

# pos = 1
# cnn = models.CNN(im.shape, 3, hyperpars, name = "count")
# cnn.build_layers()
# models.fit_model(cnn, [img_train,class_train[:,pos], img_test, class_test[:,pos]])
# del cnn

# hyperpars['dense_size']  = 512 #512

# pos = 2
# cnn = models.CNN(im.shape, 3, hyperpars, name = "fill")
Exemplo n.º 7
0
        if _SAVE_BLENDED_:
            train_to_save = train_data.copy(deep=True)
            train_to_save["label"] = train_labels
            train_to_save.to_csv("blended_train_data.csv")

            holdout_to_save = holdout.copy(deep=True)
            holdout_to_save["label"] = holdout_labels
            holdout_to_save.to_csv("blended_holdout_data.csv")

            test_data.to_csv("blended_test_data.csv")

    ## final steps
    # reinstantiate
    model = md._ESTIMATORS_META_[_MAIN_ESTIMATOR_]()
    err = md.fit_model(model, train_data, train_labels)
    print "###############################################"
    print "MODEL:", model
    print "Trianing error rate:", err
    print "###############################################"

    if _BLENDING_ or _HOLDOUT_:
        holdout_preds = model.predict(holdout)
        holdout_acc = 1 - md.evaluate(holdout_preds, holdout_labels.ravel())
        print "###############################################"
        print "Holdout error rate:", holdout_acc
        print "###############################################"

        ## now re-instantiate and train on concatenated holdout + train
        train_data = pd.concat([train_data, holdout], axis=0)
        train_labels = np.concatenate([train_labels, holdout_labels], axis=0)
Exemplo n.º 8
0
    # Split test data into input (X) and output (Y) variables.
    X_test = test[:, 1:3197]
    y_test = test[:, 0]

    # Normalize train and test features
    X_train, X_test = normalize_data(X_train, X_test)

    # Create model.
    model = build_model(gpus, units, dropout)

    # Compile model.
    model = compile_model(model, lr_rate)

    # Fit model.
    model = fit_model(model, loss_patience, X_train, y_train, X_test, y_test)

    # Evaluate training data on the model.
    validate_data("Train", X_train, y_train)

    # Evaluate test data on the model.
    validate_data("Test", X_test, y_test)

    # Predict our test dataset.
    predictions = model.predict(X_test)

    # Output our test dataset for visualization.
    print_predictions(predictions, print_results)

    # Print script execution time.
    print("\nExecution time: %s %s \n " % (time() - startTime, "seconds"))