Exemplo n.º 1
0
def GeneratorErrorMap(img_dim_tuple,
                      batch_size=10,
                      modelEpoch=130,
                      threshold=0.1,
                      f=None,
                      indexes=1448):
    if (f == None):
        path = "../../data/nyu_depth_v2_labeled.mat"
        f = h5py.File(path)
    gen, length = fDataSet_generator(img_dim, batch_size, f=f)
    model = generator_unet_upsampling(img_dim, bn_mode, batch_size)
    model.load_weights('../../models/CNN/pix2depthgen_weights_epoch%d.h5' %
                       modelEpoch)  #gen_weights_epoch45.h5

    def GenFunction():
        while True:
            img, dep = gen.__next__()
            dmap = model.predict(img)
            #           errorMap=(np.divide(np.fabs(dmap-dep), dep)<threshold)
            #           errorMap=(np.divide(np.fabs(dmap-dep), dep)<threshold).astype(int)
            #           errorMap=(div0(np.fabs(dmap-dep), dep)<threshold).astype(int)
            errorMap = (np.fabs(dmap - dep) < threshold).astype(int)
            yield (img, errorMap)

    return (GenFunction(), 1448)  #todo: accurate Value
Exemplo n.º 2
0
def GeneratorErrorMap(img_dim_tuple,batch_size=10, modelEpoch=130, threshold=0.1,f=None,indexes=1448):
   if(f==None):
   	path = "../../data/nyu_depth_v2_labeled.mat"
   	f = h5py.File(path)
   gen , length = fDataSet_generator(img_dim, batch_size,f=f)
   model = generator_unet_upsampling(img_dim, bn_mode, batch_size)
   model.load_weights('../../models/CNN/pix2depthgen_weights_epoch%d.h5' % modelEpoch) #gen_weights_epoch45.h5
   def GenFunction():
       while True:
           img, dep = gen.__next__()
           dmap = model.predict(img)
#           errorMap=(np.divide(np.fabs(dmap-dep), dep)<threshold)
#           errorMap=(np.divide(np.fabs(dmap-dep), dep)<threshold).astype(int)
#           errorMap=(div0(np.fabs(dmap-dep), dep)<threshold).astype(int)
           errorMap=(np.fabs(dmap-dep)<threshold).astype(int)
           yield (img,errorMap)
   return(GenFunction(),1448) #todo: accurate Value
Exemplo n.º 3
0
            img = f['images'][i]
            depth = f['depths'][i]
            img_ = np.empty([img_dim, img_dim, 3])
            img_[:, :, 0] = cv2.resize(img[0, :, :].T, (img_dim, img_dim))
            img_[:, :, 1] = cv2.resize(img[1, :, :].T, (img_dim, img_dim))
            img_[:, :, 2] = cv2.resize(img[2, :, :].T, (img_dim, img_dim))
            depth_ = np.empty([img_dim, img_dim, 3])
            depth_[:, :, 0] = cv2.resize(depth[:, :].T, (img_dim, img_dim))
            depth_[:, :, 1] = cv2.resize(depth[:, :].T, (img_dim, img_dim))
            depth_[:, :, 2] = cv2.resize(depth[:, :].T, (img_dim, img_dim))
            img_ = img_ / 255.0
            depth_ = depth_ / 10.0
            img_batch[index] = img_
            depth_batch[index] = depth_
        yield img_batch, depth_batch


gen = facades_generator(img_dim, batch_size=1)

img, dep = next(gen)
cv2.imwrite("real.jpg", img[0] * 255)
for i in range(0, 200, 5):
    model = generator_unet_upsampling(img_dim, bn_mode, batch_size)
    model.load_weights('../../models/CNN/gen_weights_epoch%d.h5' %
                       i)  #gen_weights_epoch45.h5
    dmap = model.predict(dep)[0]
    print((dep[0][0][0]))
    print((dep.shape))
    print((dmap[0][0][0]))
    cv2.imwrite("test_%d.jpg" % i, np.hstack((dmap * 255, dep[0] * 255)))
Exemplo n.º 4
0
def main(dataset, batch_size, patch_size, epochs, label_smoothing,
         label_flipping):
    print(project_dir)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True  # dynamically grow the memory used on the GPU
    sess = tf.Session(config=config)
    K.tensorflow_backend.set_session(
        sess)  # set this TensorFlow session as the default session for Keras

    image_data_format = "channels_first"
    K.set_image_data_format(image_data_format)

    save_images_every_n_batches = 30
    save_model_every_n_epochs = 0

    # configuration parameters
    print("Config params:")
    print("  dataset = {}".format(dataset))
    print("  batch_size = {}".format(batch_size))
    print("  patch_size = {}".format(patch_size))
    print("  epochs = {}".format(epochs))
    print("  label_smoothing = {}".format(label_smoothing))
    print("  label_flipping = {}".format(label_flipping))
    print("  save_images_every_n_batches = {}".format(
        save_images_every_n_batches))
    print("  save_model_every_n_epochs = {}".format(save_model_every_n_epochs))

    model_name = datetime.strftime(datetime.now(), '%y%m%d-%H%M')
    model_dir = os.path.join(project_dir, "models", model_name)
    fig_dir = os.path.join(project_dir, "reports", "figures")
    logs_dir = os.path.join(project_dir, "reports", "logs", model_name)

    os.makedirs(model_dir)

    # Load and rescale data
    ds_train_gen = data_utils.DataGenerator(file_path=dataset,
                                            dataset_type="train",
                                            batch_size=batch_size)
    ds_train_disc = data_utils.DataGenerator(file_path=dataset,
                                             dataset_type="train",
                                             batch_size=batch_size)
    ds_val = data_utils.DataGenerator(file_path=dataset,
                                      dataset_type="val",
                                      batch_size=batch_size)
    enq_train_gen = OrderedEnqueuer(ds_train_gen,
                                    use_multiprocessing=True,
                                    shuffle=True)
    enq_train_disc = OrderedEnqueuer(ds_train_disc,
                                     use_multiprocessing=True,
                                     shuffle=True)
    enq_val = OrderedEnqueuer(ds_val, use_multiprocessing=True, shuffle=False)

    img_dim = ds_train_gen[0][0].shape[-3:]

    n_batch_per_epoch = len(ds_train_gen)
    epoch_size = n_batch_per_epoch * batch_size

    print("Derived params:")
    print("  n_batch_per_epoch = {}".format(n_batch_per_epoch))
    print("  epoch_size = {}".format(epoch_size))
    print("  n_batches_val = {}".format(len(ds_val)))

    # Get the number of non overlapping patch and the size of input image to the discriminator
    nb_patch, img_dim_disc = data_utils.get_nb_patch(img_dim, patch_size)

    tensorboard = TensorBoard(log_dir=logs_dir,
                              histogram_freq=0,
                              batch_size=batch_size,
                              write_graph=True,
                              write_grads=True,
                              update_freq='batch')

    try:
        # Create optimizers
        opt_dcgan = Adam(lr=1E-3, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
        # opt_discriminator = SGD(lr=1E-3, momentum=0.9, nesterov=True)
        opt_discriminator = Adam(lr=1E-3,
                                 beta_1=0.9,
                                 beta_2=0.999,
                                 epsilon=1e-08)

        # Load generator model
        generator_model = models.generator_unet_upsampling(img_dim)
        generator_model.summary()
        plot_model(generator_model,
                   to_file=os.path.join(fig_dir, "generator_model.png"),
                   show_shapes=True,
                   show_layer_names=True)

        # Load discriminator model
        # TODO: modify disc to accept real input as well
        discriminator_model = models.DCGAN_discriminator(
            img_dim_disc, nb_patch)
        discriminator_model.summary()
        plot_model(discriminator_model,
                   to_file=os.path.join(fig_dir, "discriminator_model.png"),
                   show_shapes=True,
                   show_layer_names=True)

        # TODO: pretty sure this is unnecessary
        generator_model.compile(loss='mae', optimizer=opt_discriminator)
        discriminator_model.trainable = False

        DCGAN_model = models.DCGAN(generator_model, discriminator_model,
                                   img_dim, patch_size, image_data_format)

        # L1 loss applies to generated image, cross entropy applies to predicted label
        loss = [models.l1_loss, 'binary_crossentropy']
        loss_weights = [1E1, 1]
        DCGAN_model.compile(loss=loss,
                            loss_weights=loss_weights,
                            optimizer=opt_dcgan)

        discriminator_model.trainable = True
        discriminator_model.compile(loss='binary_crossentropy',
                                    optimizer=opt_discriminator)

        tensorboard.set_model(DCGAN_model)

        # Start training
        enq_train_gen.start(workers=1, max_queue_size=20)
        enq_train_disc.start(workers=1, max_queue_size=20)
        enq_val.start(workers=1, max_queue_size=20)
        out_train_gen = enq_train_gen.get()
        out_train_disc = enq_train_disc.get()
        out_val = enq_val.get()

        print("Start training")
        for e in range(1, epochs + 1):
            # Initialize progbar and batch counter
            progbar = generic_utils.Progbar(epoch_size)
            start = time.time()

            for batch_counter in range(1, n_batch_per_epoch + 1):
                X_transformed_batch, X_orig_batch = next(out_train_disc)

                # Create a batch to feed the discriminator model
                X_disc, y_disc = data_utils.get_disc_batch(
                    X_transformed_batch,
                    X_orig_batch,
                    generator_model,
                    batch_counter,
                    patch_size,
                    label_smoothing=label_smoothing,
                    label_flipping=label_flipping)

                # Update the discriminator
                disc_loss = discriminator_model.train_on_batch(X_disc, y_disc)

                # Create a batch to feed the generator model
                X_gen_target, X_gen = next(out_train_gen)
                y_gen = np.zeros((X_gen.shape[0], 2), dtype=np.uint8)
                # Set labels to 1 (real) to maximize the discriminator loss
                y_gen[:, 1] = 1

                # Freeze the discriminator
                discriminator_model.trainable = False
                gen_loss = DCGAN_model.train_on_batch(X_gen,
                                                      [X_gen_target, y_gen])
                # Unfreeze the discriminator
                discriminator_model.trainable = True

                metrics = [("D logloss", disc_loss), ("G tot", gen_loss[0]),
                           ("G L1", gen_loss[1]), ("G logloss", gen_loss[2])]
                progbar.add(batch_size, values=metrics)

                logs = {k: v for (k, v) in metrics}
                logs["size"] = batch_size

                tensorboard.on_batch_end(batch_counter, logs=logs)

                # Save images for visualization
                if batch_counter % save_images_every_n_batches == 0:
                    # Get new images from validation
                    data_utils.plot_generated_batch(
                        X_transformed_batch, X_orig_batch, generator_model,
                        os.path.join(logs_dir, "current_batch_training.png"))
                    X_transformed_batch, X_orig_batch = next(out_val)
                    data_utils.plot_generated_batch(
                        X_transformed_batch, X_orig_batch, generator_model,
                        os.path.join(logs_dir, "current_batch_validation.png"))

            print("")
            print('Epoch %s/%s, Time: %s' % (e, epochs, time.time() - start))
            tensorboard.on_epoch_end(e, logs=logs)

            if (save_model_every_n_epochs >= 1 and e % save_model_every_n_epochs == 0) or \
                    (e == epochs):
                print("Saving model for epoch {}...".format(e), end="")
                sys.stdout.flush()
                gen_weights_path = os.path.join(
                    model_dir, 'gen_weights_epoch{:03d}.h5'.format(e))
                generator_model.save_weights(gen_weights_path, overwrite=True)

                disc_weights_path = os.path.join(
                    model_dir, 'disc_weights_epoch{:03d}.h5'.format(e))
                discriminator_model.save_weights(disc_weights_path,
                                                 overwrite=True)

                DCGAN_weights_path = os.path.join(
                    model_dir, 'DCGAN_weights_epoch{:03d}.h5'.format(e))
                DCGAN_model.save_weights(DCGAN_weights_path, overwrite=True)
                print("done")

    except KeyboardInterrupt:
        pass

    enq_train_gen.stop()
    enq_train_disc.stop()
    enq_val.stop()
Exemplo n.º 5
0
def train(_run, train_cnf, generator_cnf, discriminator_cnf):
    generator = train_cnf["generator"]
    discriminator = train_cnf["discriminator"]
    batch_size = train_cnf["batch_size"]
    nb_epoch = train_cnf["nb_epoch"]
    learning_rate = train_cnf["learning_rate"]
    beta_1 = train_cnf["beta_1"]
    beta_2 = train_cnf["beta_2"]
    l1_weight = train_cnf["l1_weight"]
    dset = train_cnf["dset"]
    base_dir = train_cnf["base_dir"]
    model_save_epoch = train_cnf["model_save_epoch"]
    fig_save_epoch = train_cnf["fig_save_epoch"]
    reverse_dset = train_cnf["reverse_dset"]

    # Setup environment (logging directory etc)
    # Just creates the figures and models dirs
    experiment_name = 'busgan/exp' + str(_run._id)
    experiment_dir = os.path.join(base_dir, 'experiments', experiment_name)
    general_utils.setup_logging(experiment_dir)

    # Load and rescale data
    X_full_train, X_sketch_train, X_full_val, X_sketch_val = data_utils.load_data(dset, base_dir, reverse_dset)
    img_dim = X_full_train.shape[-3:]

    if generator == 'generator_unet_upsampling':
        generator_model = models.generator_unet_upsampling(img_dim=img_dim,
                                                           **generator_cnf)
    elif generator == 'generator_upsampling':
        generator_model = models.generator_upsampling(img_dim=img_dim,
                                                      **generator_cnf)
    else:
        raise ValueError('Generator name not recognised')

    if discriminator == 'DCGAN_discriminator':
        discriminator_model = models.DCGAN_discriminator(img_dim=img_dim,
                                                         **discriminator_cnf)
    else:
        raise ValueError('Discriminator name not recognised')

    batches_per_e = X_full_train.shape[0] // batch_size

    try:

        # Create optimizers
        opt_dcgan = Adam(lr=learning_rate,
                         beta_1=beta_1, beta_2=beta_2, epsilon=1e-08)
        opt_discriminator = Adam(lr=learning_rate,
                                 beta_1=beta_1, beta_2=beta_2,
                                 epsilon=1e-08)

        generator_model.compile(loss='mae', optimizer=opt_discriminator)
        discriminator_model.trainable = False

        GAN_model = models.GAN(generator_model, discriminator_model, img_dim)

        loss = [l1_loss, 'binary_crossentropy']
        loss_weights = [l1_weight, 1]
        GAN_model.compile(loss=loss, loss_weights=loss_weights,
                          optimizer=opt_dcgan)

        discriminator_model.trainable = True
        discriminator_model.compile(loss='binary_crossentropy',
                                    optimizer=opt_discriminator)

        # Start training
        for e in range(1, nb_epoch + 1):
            print(f'Epoch {e}/{nb_epoch}')
            batch_counter = 1

            for X_full_batch, X_sketch_batch in data_utils.gen_batch(X_full_train, X_sketch_train, batch_size):
                print(f'Batch {batch_counter}/{batches_per_e}')
                # Create a batch to feed the discriminator model
                X_disc, y_disc = data_utils.get_disc_batch(X_full_batch,
                                                           X_sketch_batch,
                                                           generator_model,
                                                           batch_counter)

                # Update the discriminator
                disc_loss = discriminator_model.train_on_batch(X_disc, y_disc)

                # Create a batch to feed the generator model
                X_gen_target, X_gen = X_full_batch, X_sketch_batch
                y_gen = np.ones((X_gen.shape[0], 1), dtype=np.uint8)

                # Freeze the discriminator
                discriminator_model.trainable = False
                gen_loss = GAN_model.train_on_batch(X_gen,
                                                    [X_gen_target, y_gen])
                # Unfreeze the discriminator
                discriminator_model.trainable = True

                # In the last iteration and if epoch is multiple of image
                # saving interval
                if batch_counter == batches_per_e and e % fig_save_epoch == 0:
                    # Save figures
                    figures_dir = os.path.join(experiment_dir, 'figures')
                    # At the end of each epoch save images for visualization
                    # Get new images from validation
                    data_utils.plot_generated_batch(X_full_batch,
                                                    X_sketch_batch,
                                                    generator_model,
                                                    "training",
                                                    figures_dir, e)

                    idx = np.random.choice(X_full_val.shape[0], batch_size,
                                           replace=False)
                    data_utils.plot_generated_batch(X_full_val[idx],
                                                    X_sketch_val[idx],
                                                    generator_model,
                                                    "validation",
                                                    figures_dir, e)

                # In the last batch also log metrics
                if batch_counter == batches_per_e:
                    _run.log_scalar('d.logloss', disc_loss, e)
                    _run.log_scalar('g.tot', gen_loss[0], e)
                    _run.log_scalar('g.l1', gen_loss[1], e)
                    _run.log_scalar('g.logloss', gen_loss[2], e)

                batch_counter += 1

            if e % model_save_epoch == 0:
                models_dir = os.path.join(experiment_dir, 'models')
                gen_weights_path = os.path.join(models_dir,
                                                'gen_weights_epoch%s.h5' % e)
                generator_model.save_weights(gen_weights_path, overwrite=True)

                disc_weights_path = os.path.join(models_dir,
                                                 'disc_weights_epoch%s.h5' % e)
                discriminator_model.save_weights(disc_weights_path,
                                                 overwrite=True)

                GAN_weights_path = os.path.join(models_dir,
                                                'GAN_weights_epoch%s.h5' % e)
                GAN_model.save_weights(GAN_weights_path, overwrite=True)

        # Clear GPU + RAM
        K.clear_session()
        del GAN_model
        del generator_model
        del discriminator_model
    except KeyboardInterrupt:
        pass
Exemplo n.º 6
0
def main(model,
         input,
         truth,
         output,
         image_size,
         concat,
         batch_size,
         dataset):

    K.set_image_data_format("channels_first")

    # Load the model
    img_dim = (3,) + image_size
    generator_model = models.generator_unet_upsampling(img_dim)
    generator_model.load_weights(str(model))

    # Setup the data generator
    if h5py.is_hdf5(input):
        generator = data_utils.DataGenerator(file_path=input,
                                             dataset_type=dataset,
                                             batch_size=batch_size)
        batch_gen = get_batch_from_hdf5(generator)
        count = len(generator) * batch_size
    elif os.path.isdir(input):
        # Directory of images
        input_paths = [str(img) for img in sorted(Path(input).glob('**/*.jpg'))]
        if truth is not None:
            truth_paths = [str(img) for img in sorted(Path(truth).glob('**/*.jpg'))]
        else:
            truth_paths = []
        batch_gen = get_batch_from_images(input_paths, truth_paths, batch_size, image_size)
        count = len(input_paths)
    else:
        # Single image file
        input_paths = [input]
        if truth is not None:
            truth_paths = [truth]
        else:
            truth_paths = []
        batch_size = 1
        batch_gen = get_batch_from_images(input_paths, truth_paths, batch_size, image_size)
        count = 1

    # Setup the output
    if output is not None:
        # If input is multiple images, create directory for output images
        if count > 1:
            if os.path.exists(output):
                raise IOError('Output directory already exists')
            os.makedirs(output)

    # Inference
    with tqdm(None, total=count) as progress_bar:
        for batch_record in batch_gen:
            input_batch = batch_record.input
            truth_batch = batch_record.truth
            image_names = batch_record.image_names
            out_batch = generator_model.predict(input_batch)
            progress_bar.update(input_batch.shape[0])

            if output is not None:
                # Individually save each image in the batch
                for i in range(len(image_names)):
                    input_b = input_batch[i:i+1]
                    output_b = out_batch[i:i+1]
                    truth_b = truth_batch[i:i+1] if truth_batch is not None else None
                    image_name = image_names[i]
                    out_image = generate_output_image(input_b, output_b, truth_b, concat)
                    if count > 1:
                        out_path = os.path.join(str(output), image_name)
                    else:
                        out_path = output
                    plt.imsave(out_path, out_image)
            else:
                # Show the image
                out_image = generate_output_image(input_batch, out_batch, truth_batch, concat)
                plt.figure()
                plt.imshow(out_image)
                plt.show()
                plt.clf()
                plt.close()
Exemplo n.º 7
0
        		img = f['images'][i]
        		depth = f['depths'][i]
        		img_=np.empty([img_dim,img_dim,3])
        		img_[:,:,0] = cv2.resize(img[0,:,:].T,(img_dim,img_dim))
        		img_[:,:,1] = cv2.resize(img[1,:,:].T,(img_dim,img_dim))
        		img_[:,:,2] = cv2.resize(img[2,:,:].T,(img_dim,img_dim))
        		depth_ = np.empty([img_dim, img_dim, 3])
        		depth_[:,:,0] = cv2.resize(depth[:,:].T,(img_dim,img_dim))
        		depth_[:,:,1] = cv2.resize(depth[:,:].T,(img_dim,img_dim))
        		depth_[:,:,2] = cv2.resize(depth[:,:].T,(img_dim,img_dim))
        		img_ = img_/255.0
        		depth_ = depth_/10.0
        		img_batch[index] = img_
        		depth_batch[index] = depth_
        	yield (img_batch,depth_batch)
    return (innerGenerator(),1448) #TODO: the corect size

if __name__ == "__main__":
	gen, length =fDataSet_generator(img_dim, batch_size=1)

	img, dep = gen.__next__()
	cv2.imwrite("real.jpg",img[0]*255)
	i=130
	model = generator_unet_upsampling(img_dim, bn_mode, batch_size)
	model.load_weights('../../models/CNN/pix2depthgen_weights_epoch%d.h5' % i) #gen_weights_epoch45.h5
	dmap = model.predict(img)[0]
	print (dep[0][1][0])
	print (dep.shape)
	print (dmap[1][0])
	cv2.imwrite("test_%d.jpg" % i,np.hstack((dmap*255,dep[0]*255)))