Exemplo n.º 1
0
def main():

    outputdir = 'result/special_v3/'
    if os.path.isdir(outputdir):
        print('save in :' + outputdir)
    else:
        os.makedirs(outputdir)

    train_img_path = '/data/MIT-BIH_AD_v3/'
    test_img_path = '/data/MIT-BIH_AD_v3/'
    train_file = './MIT-BIH_AD_sp_train.txt'
    test_file = './MIT-BIH_AD_sp_val.txt'
    num_classes = 7

    f1 = open(train_file, 'r')
    f2 = open(test_file, 'r')
    lines = f1.readlines()
    f1.close()
    train_samples = len(lines)
    lines = f2.readlines()
    f2.close()
    val_samples = len(lines)

    batch_size = 32
    epochs = 120
    input_h = 128
    input_w = 128

    model = proposed_model(nb_classes=num_classes)

    lr = 0.0001
    adam = Adam(lr=lr)
    model.compile(loss='categorical_crossentropy',
                  optimizer=adam,
                  metrics=['accuracy'])
    model.summary()
    history = model.fit_generator(
        generator_train_batch(train_file, batch_size, num_classes,
                              train_img_path, input_h, input_w),
        steps_per_epoch=train_samples // batch_size,
        epochs=epochs,
        callbacks=[Step()],
        validation_data=generator_val_batch(test_file, batch_size, num_classes,
                                            test_img_path, input_h, input_w),
        validation_steps=val_samples // batch_size,
        verbose=1)
    plot_history(history, outputdir)
    save_history(history, outputdir)
    model.save_weights(outputdir + 'proposed_model')
Exemplo n.º 2
0
def main():
    proposed = False
    if proposed:
        outputdir = 'result/NoAugment_{}/'.format(proposed)
        if os.path.isdir(outputdir):
            print('save in :'+outputdir)
        else:
            os.makedirs(outputdir)

        train_img_path = '/data/MIT-BIH_AD/'
        train_file = '/home/ccl/Documents/ECG-Arrhythmia-classification-in-2D-CNN/MIT-BIH_AD_train_paper.txt'
        num_classes = 8
        k = 10


        f1 = open(train_file, 'r')
        lines = f1.readlines()
        f1.close()

        train_samples = len(lines)
        val_samples = len(lines)//k

        num = len(lines)
        new_lines = []
        index = [n for n in range(num)]
        random.shuffle(index)
        for m in range(num):
            new_lines.append(lines[index[m]])

        lines = new_lines
        temp = []
        new_lines = []
        for i in range(num):
            if i % val_samples == 0:
                temp = []
                new_lines.append(temp)
            temp.append(lines[i])

        batch_size = 32
        epochs = 40
        input_h = 96
        input_w = 96
        augmentation = False
        model = proposed_model()


        lr = 0.0001
        adam = Adam(lr=lr)
        model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
        model.summary()
        history = model.fit_generator(generator_train_batch_proposed(new_lines, k, batch_size, num_classes, train_img_path, input_h, input_w, augmentation=augmentation),
                                      steps_per_epoch=train_samples // batch_size,
                                      epochs=epochs,
                                      callbacks=[Step()],
                                      validation_data=generator_val_batch_proposed(new_lines, k, batch_size, num_classes, train_img_path, input_h, input_w, augmentation=augmentation),
                                      validation_steps=val_samples // batch_size,
                                      verbose=1)
        plot_history(history, outputdir)
        save_history(history, outputdir)
        model.save_weights(outputdir+'proposed_model_{}.h5'.format(proposed))
    else:
        outputdir = 'result/NoAugment_{}/'.format(proposed)
        if os.path.isdir(outputdir):
            print('save in :' + outputdir)
        else:
            os.makedirs(outputdir)

        train_img_path = '/data/MIT-BIH_AD/'
        test_img_path = '/data/MIT-BIH_AD/'
        train_file = '/home/ccl/Documents/ECG-Arrhythmia-classification-in-2D-CNN/MIT-BIH_AD_train.txt'
        test_file = '/home/ccl/Documents/ECG-Arrhythmia-classification-in-2D-CNN/MIT-BIH_AD_val.txt'
        num_classes = 8

        f1 = open(train_file, 'r')
        f2 = open(test_file, 'r')
        lines = f1.readlines()
        f1.close()
        train_samples = len(lines)
        lines = f2.readlines()
        f2.close()
        val_samples = len(lines)

        batch_size = 32
        epochs = 40
        input_h = 96
        input_w = 96

        model = proposed_model()

        lr = 0.0001
        adam = Adam(lr=lr)
        model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
        model.summary()
        history = model.fit_generator(
            generator_train_batch(train_file, batch_size, num_classes, train_img_path, input_h, input_w),
            steps_per_epoch=train_samples // batch_size,
            epochs=epochs,
            callbacks=[Step()],
            validation_data=generator_val_batch(test_file, batch_size, num_classes, test_img_path, input_h, input_w),
            validation_steps=val_samples // batch_size,
            verbose=1)
        plot_history(history, outputdir)
        save_history(history, outputdir)
        model.save_weights(outputdir+'proposed_model_{}.h5'.format(proposed))
Exemplo n.º 3
0
def main():
    # init model
    class_names = ['Normal', 'LBBB', 'RBBB', 'APC', 'PVC', 'PAB', 'VEB', 'VFW']
    #PE is PAB
    imageh = 128
    imagew = 128

    inputH = 96
    inputW = 96

    # ---------------------------change file models & weights--------------------

    model = proposed_model()

    lr = 0.0001
    adm = Adam(lr=lr)
    model.compile(loss='categorical_crossentropy', optimizer=adm, metrics=['accuracy'])
    model.summary()

    model.load_weights('result/first_attempt_False/proposed_model_False.h5', by_name=True)

    # ---------------------------change models & weights--------------------

    test_file = './MIT-BIH_AD_test.txt'
    test_img_path = '/home/cc_lee/Dataset/MIT-BIH_AD'

    augmentation = False
    output_img = False
    outputdir = os.path.join('./inference/', str(augmentation))
    os.makedirs(outputdir, exist_ok=True)

    os.makedirs(outputdir+'/False', exist_ok=True)
    os.makedirs(outputdir+'/True', exist_ok=True)

    f = open(test_file, 'r')
    lines = f.readlines()
    random.shuffle(lines)
    TP = 0
    count = 0
    total = len(lines)

    counter = {'Normal': 0, 'LBBB': 0, 'RBBB': 0, 'APC': 0, 'PVC': 0, 'PAB': 0, 'VEB': 0, 'VFW': 0}
    tp_counter = {'Normal': 0, 'LBBB': 0, 'RBBB': 0, 'APC': 0, 'PVC': 0, 'PAB': 0, 'VEB': 0, 'VFW': 0}
    for line in tqdm(lines):
        path = line.split(' ')[0]
        label = line.split(' ')[-1]

        label = label.strip('\n')
        answer = int(label)
        img = os.path.join(test_img_path, path)

        image = cv2.imread(img)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        if augmentation:
            Hshmean = int(np.round(np.max([0, np.round((imageh - inputH) / 2)])))
            Wshmean = int(np.round(np.max([0, np.round((imagew - inputW) / 2)])))
            image = image[Hshmean:Hshmean + inputH, Wshmean:Wshmean + inputW, :]
            image = cv2.resize(image, (imagew, imageh))
        else:
            pass

        input_data = np.zeros((1, imagew, imageh, 3), dtype='float32')
        input_data[0] = image

        pred = model.predict(input_data)
        label = np.argmax(pred[0])

        if label == answer:
            TP += 1
            tp_counter[class_names[label]] += 1

        count += 1
        counter[class_names[label]] += 1

        if output_img:
            if np.argmax(pred[0]) == 1:
                color_t = (0, 255, 255)
            else:
                color_t = (0, 255, 0)

            image = cv2.resize(image, (128*3, 128*3))

            cv2.putText(image, class_names[answer].split(' ')[-1].strip(), (10, 30),
                        cv2.FONT_ITALIC, 1,
                        color_t, 1)

            cv2.putText(image, class_names[label].split(' ')[-1].strip(), (10, 70),
                        cv2.FONT_HERSHEY_SIMPLEX, 1,
                        color_t, 1)
            cv2.putText(image, "prob: %.4f" % pred[0][label], (10, 110),
                        cv2.FONT_HERSHEY_SIMPLEX, 1,
                        color_t, 1)



            cv2.imwrite(os.path.join(outputdir, str(answer==label)) + '/' + '{}_{}'.format(class_names[answer], os.path.split(path)[1][:-4] + '_result.jpg', ), image)


    print('{}/{} Acc: {} Pred:{} Answer: {}'.format(count, total, str(TP / count), class_names[label], class_names[answer] ) )
    print('Normal:{}/{}={},\n LBBB:{}/{}={},\n RBBB:{}/{}={},\n APC:{}/{}={},\n PVC:{}/{}={},\n PAB:{}/{}={},\n VEB:{}/{}={},\n VFW:{}/{}={}'.format(
        tp_counter['Normal'], counter['Normal'], (tp_counter['Normal']/counter['Normal']),
        tp_counter['LBBB'], counter['LBBB'], (tp_counter['LBBB'] / counter['LBBB']),
        tp_counter['RBBB'], counter['RBBB'], (tp_counter['RBBB'] / counter['RBBB']),
        tp_counter['APC'], counter['APC'], (tp_counter['APC'] / counter['APC']),
        tp_counter['PVC'], counter['PVC'], (tp_counter['PVC'] / counter['PVC']),
        tp_counter['PAB'], counter['PAB'], (tp_counter['PAB'] / counter['PAB']),
        tp_counter['VEB'], counter['VEB'], (tp_counter['VEB'] / counter['VEB']),
        tp_counter['VFW'], counter['VFW'], (tp_counter['VFW'] / counter['VFW'])

    ))
def main():

    outputdir = 'result/192_128_class_weight_v3_120eps/'
    if os.path.isdir(outputdir):
        print('save in :' + outputdir)
    else:
        os.makedirs(outputdir)

    train_img_path = '/data/MIT-BIH_AD_v3/'
    test_img_path = '/data/MIT-BIH_AD_v3/'
    train_file = './MIT-BIH_AD_train.txt'
    test_file = './MIT-BIH_AD_val.txt'
    num_classes = 8

    f1 = open(train_file, 'r')
    f2 = open(test_file, 'r')
    lines = f1.readlines()
    f1.close()
    train_samples = len(lines)
    lines = f2.readlines()
    f2.close()
    val_samples = len(lines)

    batch_size = 32
    epochs = 120
    input_h = 128
    input_w = 128

    class_weight = {
        0: (1 - (75016 / 107620)) * 8,
        1: (1 - (8072 / 107620)) * 8,
        2: (1 - (7256 / 107620)) * 8,
        3: (1 - (2544 / 107620)) * 8,
        4: (1 - (7130 / 107620)) * 8,
        5: (1 - (7024 / 107620)) * 8,
        6: (1 - (106 / 107620)) * 8,
        7: (1 - (472 / 107620)) * 8
    }

    model = proposed_model(nb_classes=num_classes)

    lr = 0.0001
    adam = Adam(lr=lr)
    model.compile(loss='categorical_crossentropy',
                  optimizer=adam,
                  metrics=['accuracy'])
    model.summary()
    history = model.fit_generator(
        generator_train_batch(train_file, batch_size, num_classes,
                              train_img_path, input_h, input_w),
        steps_per_epoch=train_samples // batch_size,
        epochs=epochs,
        callbacks=[Step()],
        validation_data=generator_val_batch(test_file, batch_size, num_classes,
                                            test_img_path, input_h, input_w),
        validation_steps=val_samples // batch_size,
        verbose=1,
        class_weight=class_weight)
    plot_history(history, outputdir)
    save_history(history, outputdir)
    model.save_weights(outputdir + 'proposed_model.h5')