Exemplo n.º 1
0
def main(config):
    logger = prepare_logger(config)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # get loaders
    if not config.is_train_source:
        target_loader = get_loader(type="MNIST",
                                   train=False,
                                   batch_size=config.batch_size)

    source_train_loader = get_loader(type="SVHN",
                                     train=True,
                                     batch_size=config.batch_size)
    source_test_loader = get_loader(type="SVHN",
                                    train=False,
                                    batch_size=config.batch_size)

    # build source classifier
    model_src = LeNet(config.num_gpus).to(device)
    if (not config.is_train_source) or config.is_finetune:
        model_src.load_state_dict(torch.load(config.model_dir))

    # train source classifier
    if config.is_train_source:
        logger.info("train source classifier..")
        train_source(model_src, source_train_loader, source_test_loader,
                     config, logger)
        logger.info("evaluate source classifier..")
        logger.info("test accurracy in source domain: %f\n" %
                    (evaluate(model_src, source_test_loader)))

    else:
        # initialize target classifer with source classifer
        model_trg = torch.load(open("./pretrained/lenet-source.pth", "rb"))

        # build discriminator
        D = Discriminator(config.num_gpus)

        # adaptation process
        logger.info("start adaptation process..")
        adapt_target_domain(D, model_src, model_trg, source_train_loader,
                            target_loader, config)
        logger.info("evaluate target classifier..")
        logger.info("accurracy in target domain: %f\n" %
                    (evaluate(model_trg, target_loader)))
Exemplo n.º 2
0
])

test_dataset = DOGCAT(root='../Pytorch-Tutorial/datasets/dogcat_2',
                      train=False,
                      transform=transform)

test_loader = Data.DataLoader(dataset=test_dataset,
                              batch_size=100,
                              shuffle=False,
                              num_workers=2)

net = LeNet()
print(net)

if os.path.isfile('saves/dogcat_lenet_params.pkl'):
    net.load_state_dict(torch.load('saves/dogcat_lenet_params.pkl'))
else:
    print("dogcat_lenet_params.pkl don't exists.")
    exit()

# Test the Model
total = 0
correct = 0
for images, labels in test_loader:
    images = Variable(images)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += sum(predicted == labels)

print('Test Accuracy of the model on the %d test images: %d %%' %
Exemplo n.º 3
0
def main():
    # Data Loader (Input Pipeline)
    print('loading dataset...')
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size,
                                               num_workers=args.num_workers,
                                               drop_last=False,
                                               shuffle=False)

    val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
                                             batch_size=batch_size,
                                             num_workers=args.num_workers,
                                             drop_last=False,
                                             shuffle=False)

    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size,
                                              num_workers=args.num_workers,
                                              drop_last=False,
                                              shuffle=False)
    # Define models
    print('building model...')
    if args.dataset == 'mnist':
        clf1 = LeNet()
    if args.dataset == 'fashionmnist':
        clf1 = resnet.ResNet18_F(10)
    if args.dataset == 'cifar10':
        clf1 = resnet.ResNet34(10)
    if args.dataset == 'svhn':
        clf1 = resnet.ResNet34(10)

    clf1.cuda()
    optimizer = torch.optim.SGD(clf1.parameters(),
                                lr=args.lr,
                                weight_decay=args.weight_decay)

    with open(txtfile, "a") as myfile:
        myfile.write('epoch train_acc val_acc test_acc\n')

    epoch = 0
    train_acc = 0
    val_acc = 0
    # evaluate models with random weights
    test_acc = evaluate(test_loader, clf1)
    print('Epoch [%d/%d] Test Accuracy on the %s test data: Model1 %.4f %%' %
          (epoch + 1, args.n_epoch_1, len(test_dataset), test_acc))
    # save results
    with open(txtfile, "a") as myfile:
        myfile.write(
            str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) + ' ' +
            str(test_acc) + ' ' + "\n")

    best_acc = 0.0
    # training
    for epoch in range(1, args.n_epoch_1):
        # train models
        clf1.train()
        train_acc = train(clf1, train_loader, epoch, optimizer,
                          nn.CrossEntropyLoss())
        # validation
        val_acc = evaluate(val_loader, clf1)
        # evaluate models
        test_acc = evaluate(test_loader, clf1)

        # save results
        print(
            'Epoch [%d/%d] Train Accuracy on the %s train data: Model %.4f %%'
            % (epoch + 1, args.n_epoch_1, len(train_dataset), train_acc))
        print('Epoch [%d/%d] Val Accuracy on the %s val data: Model %.4f %% ' %
              (epoch + 1, args.n_epoch_1, len(val_dataset), val_acc))
        print(
            'Epoch [%d/%d] Test Accuracy on the %s test data: Model %.4f %% ' %
            (epoch + 1, args.n_epoch_1, len(test_dataset), test_acc))
        with open(txtfile, "a") as myfile:
            myfile.write(
                str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) +
                ' ' + str(test_acc) + ' ' + "\n")

        if val_acc > best_acc:
            best_acc = val_acc
            torch.save(clf1.state_dict(), model_save_dir + '/' + 'model.pth')

    print('Matrix Factorization is doing...')
    clf1.load_state_dict(torch.load(model_save_dir + '/' + 'model.pth'))
    A = respresentations_extract(train_loader, clf1, len(train_dataset),
                                 args.dim, batch_size)
    A_val = respresentations_extract(val_loader, clf1, len(val_dataset),
                                     args.dim, batch_size)
    A_total = np.append(A, A_val, axis=0)
    W_total, H_total, error = train_m(A_total, args.basis, args.iteration_nmf,
                                      1e-5)
    for i in range(W_total.shape[0]):
        for j in range(W_total.shape[1]):
            if W_total[i, j] < 1e-6:
                W_total[i, j] = 0.
    W = W_total[0:len(train_dataset), :]
    W_val = W_total[len(train_dataset):, :]
    print('Transition Matrix is estimating...Wating...')
    logits_matrix = probability_extract(train_loader, clf1, len(train_dataset),
                                        args.num_classes, batch_size)
    idx_matrix_group, transition_matrix_group = estimate_matrix(
        logits_matrix, model_save_dir)
    logits_matrix_val = probability_extract(val_loader, clf1, len(val_dataset),
                                            args.num_classes, batch_size)
    idx_matrix_group_val, transition_matrix_group_val = estimate_matrix(
        logits_matrix_val, model_save_dir)
    func = nn.MSELoss()

    model = Matrix_optimize(args.basis, args.num_classes)
    optimizer_1 = torch.optim.Adam(model.parameters(), lr=0.001)
    basis_matrix_group = basis_matrix_optimize(model, optimizer_1, args.basis,
                                               args.num_classes, W,
                                               transition_matrix_group,
                                               idx_matrix_group, func,
                                               model_save_dir, args.n_epoch_4)

    basis_matrix_group_val = basis_matrix_optimize(
        model, optimizer_1, args.basis, args.num_classes, W_val,
        transition_matrix_group_val, idx_matrix_group_val, func,
        model_save_dir, args.n_epoch_4)

    for i in range(basis_matrix_group.shape[0]):
        for j in range(basis_matrix_group.shape[1]):
            for k in range(basis_matrix_group.shape[2]):
                if basis_matrix_group[i, j, k] < 1e-6:
                    basis_matrix_group[i, j, k] = 0.

    optimizer_ = torch.optim.SGD(clf1.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay,
                                 momentum=args.momentum)

    best_acc = 0.0
    for epoch in range(1, args.n_epoch_2):
        # train model
        clf1.train()

        train_acc = train_correction(clf1, train_loader, epoch, optimizer_, W,
                                     basis_matrix_group, batch_size,
                                     args.num_classes, args.basis)
        # validation
        val_acc = val_correction(clf1, val_loader, epoch, W_val,
                                 basis_matrix_group_val, batch_size,
                                 args.num_classes, args.basis)

        # evaluate models
        test_acc = evaluate(test_loader, clf1)
        if val_acc > best_acc:
            best_acc = val_acc
            torch.save(clf1.state_dict(), model_save_dir + '/' + 'model.pth')
        with open(txtfile, "a") as myfile:
            myfile.write(
                str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) +
                ' ' + str(test_acc) + ' ' + "\n")
        # save results
        print(
            'Epoch [%d/%d] Train Accuracy on the %s train data: Model %.4f %%'
            % (epoch + 1, args.n_epoch_2, len(train_dataset), train_acc))
        print('Epoch [%d/%d] Val Accuracy on the %s val data: Model %.4f %% ' %
              (epoch + 1, args.n_epoch_2, len(val_dataset), val_acc))
        print(
            'Epoch [%d/%d] Test Accuracy on the %s test data: Model %.4f %% ' %
            (epoch + 1, args.n_epoch_2, len(test_dataset), test_acc))

    clf1.load_state_dict(torch.load(model_save_dir + '/' + 'model.pth'))
    optimizer_r = torch.optim.Adam(clf1.parameters(),
                                   lr=args.lr_revision,
                                   weight_decay=args.weight_decay)
    nn.init.constant_(clf1.T_revision.weight, 0.0)

    for epoch in range(1, args.n_epoch_3):
        # train models
        clf1.train()
        train_acc = train_revision(clf1, train_loader, epoch, optimizer_r, W,
                                   basis_matrix_group, batch_size,
                                   args.num_classes, args.basis)
        # validation
        val_acc = val_revision(clf1, val_loader, epoch, W_val,
                               basis_matrix_group, batch_size,
                               args.num_classes, args.basis)
        # evaluate models
        test_acc = evaluate(test_loader, clf1)
        with open(txtfile, "a") as myfile:
            myfile.write(
                str(int(epoch)) + ' ' + str(train_acc) + ' ' + str(val_acc) +
                ' ' + str(test_acc) + ' ' + "\n")

        # save results
        print(
            'Epoch [%d/%d] Train Accuracy on the %s train data: Model %.4f %%'
            % (epoch + 1, args.n_epoch_3, len(train_dataset), train_acc))
        print('Epoch [%d/%d] Val Accuracy on the %s val data: Model %.4f %% ' %
              (epoch + 1, args.n_epoch_3, len(val_dataset), val_acc))
        print(
            'Epoch [%d/%d] Test Accuracy on the %s test data: Model %.4f %% ' %
            (epoch + 1, args.n_epoch_3, len(test_dataset), test_acc))
Exemplo n.º 4
0
def main():
    if not os.path.isdir(CHECKPOINT):
        os.makedirs(CHECKPOINT)

    print('==> Preparing dataset')

    trainloader, testloader = load_CIFAR(batch_size=BATCH_SIZE,
                                         num_workers=NUM_WORKERS)

    CLASSES = []
    AUROCs = []
    auroc = AverageMeter()

    for t, cls in enumerate(ALL_CLASSES):

        print('\nTask: [%d | %d]\n' % (t + 1, len(ALL_CLASSES)))

        CLASSES = [cls]

        print("==> Creating model")
        model = LeNet(num_classes=1)

        if CUDA:
            model = model.cuda()
            model = nn.DataParallel(model)
            cudnn.benchmark = True

        print('    Total params: %.2fK' %
              (sum(p.numel() for p in model.parameters()) / 1000))

        criterion = nn.BCELoss()
        optimizer = optim.SGD(model.parameters(),
                              lr=LEARNING_RATE,
                              momentum=MOMENTUM,
                              weight_decay=WEIGHT_DECAY)

        print("==> Learning")

        best_loss = 1e10
        learning_rate = LEARNING_RATE

        for epoch in range(EPOCHS):

            # decay learning rate
            if (epoch + 1) % EPOCHS_DROP == 0:
                learning_rate *= LR_DROP
                for param_group in optimizer.param_groups:
                    param_group['lr'] = learning_rate

            print('Epoch: [%d | %d]' % (epoch + 1, EPOCHS))

            train_loss = train(trainloader,
                               model,
                               criterion,
                               CLASSES,
                               CLASSES,
                               optimizer=optimizer,
                               use_cuda=CUDA)
            test_loss = train(testloader,
                              model,
                              criterion,
                              CLASSES,
                              CLASSES,
                              test=True,
                              use_cuda=CUDA)

            # save model
            is_best = test_loss < best_loss
            best_loss = min(test_loss, best_loss)
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict': model.state_dict(),
                    'loss': test_loss,
                    'optimizer': optimizer.state_dict()
                }, CHECKPOINT, is_best)

        print("==> Calculating AUROC")

        filepath_best = os.path.join(CHECKPOINT, "best.pt")
        checkpoint = torch.load(filepath_best)
        model.load_state_dict(checkpoint['state_dict'])

        new_auroc = calc_avg_AUROC(model, testloader, CLASSES, CLASSES, CUDA)
        auroc.update(new_auroc)

        print('New Task AUROC: {}'.format(new_auroc))
        print('Average AUROC: {}'.format(auroc.avg))

        AUROCs.append(auroc.avg)

    print('\nAverage Per-task Performance over number of tasks')
    for i, p in enumerate(AUROCs):
        print("%d: %f" % (i + 1, p))
Exemplo n.º 5
0
def main():

    use_cuda = torch.cuda.is_available() and not args.no_cuda
    device = torch.device('cuda' if use_cuda else 'cpu')
    print(device)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if use_cuda:
        torch.cuda.manual_seed(args.seed)
        torch.backends.cudnn.deterministic = True

    rgb = False
    if args.mode == 'rgb':
        rgb = True

    if args.gray_scale:
        rgb = False

    if args.tracking_data_mod is True:
        args.input_size = 192

    # DATALOADER

    train_dataset = GesturesDataset(model=args.model, csv_path='csv_dataset', train=True, mode=args.mode, rgb=rgb,
                                    normalization_type=1,
                                    n_frames=args.n_frames, resize_dim=args.input_size,
                                    transform_train=args.train_transforms, tracking_data_mod=args.tracking_data_mod)
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.n_workers)

    validation_dataset = GesturesDataset(model=args.model, csv_path='csv_dataset', train=False, mode=args.mode, rgb=rgb, normalization_type=1,
                                   n_frames=args.n_frames, resize_dim=args.input_size, tracking_data_mod=args.tracking_data_mod)
    validation_loader = DataLoader(validation_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.n_workers)

    # paramteri per la rete

    in_channels = args.n_frames if not rgb else args.n_frames * 3
    n_classes = args.n_classes

    if args.model == 'LeNet':
        model = LeNet(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == 'AlexNet':
        model = AlexNet(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == 'AlexNetBN':
        model = AlexNetBN(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == "Vgg16":
        model = Vgg16(input_channels=in_channels, input_size=args.input_size, n_classes=n_classes).to(device)

    elif args.model == "Vgg16P":
        model = models.vgg16(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(3, 3), stride=1, padding=1)
        model.classifier._modules['6'] = nn.Linear(4096, n_classes)
        # model.fc = torch.nn.Linear(model.fc.in_features, n_classes)
        model = model.to(device)

    elif args.model == "ResNet18P":
        model = models.resnet18(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model._modules['conv1'] = nn.Conv2d(in_channels, 64, 7, stride=2, padding=3)
        model.fc = torch.nn.Linear(model.fc.in_features, n_classes)
        model = model.to(device)

    elif args.model == "ResNet34P":
        model = models.resnet34(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model._modules['conv1'] = nn.Conv2d(in_channels, 64, 7, stride=2, padding=3)
        model.fc = torch.nn.Linear(model.fc.in_features, n_classes)
        model = model.to(device)

    elif args.model == "DenseNet121P":
        model = models.densenet121(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=1024, out_features=n_classes, bias=True)
        model = model.to(device)

    elif args.model == "DenseNet161P":
        model = models.densenet161(pretrained=args.pretrained)
        # for params in model.parameters():
        #     params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=96, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=2208, out_features=n_classes, bias=True)
        model = model.to(device)

    elif args.model == "DenseNet169P":
        model = models.densenet169(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=1664, out_features=n_classes, bias=True)
        model = model.to(device)

    elif args.model == "DenseNet201P":
        model = models.densenet201(pretrained=args.pretrained)
        for params in model.parameters():
            params.requires_grad = False
        model.features._modules['conv0'] = nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(7, 7),
                                                     stride=(2, 2), padding=(3, 3))
        model.classifier = nn.Linear(in_features=1920, out_features=n_classes, bias=True)
        model = model.to(device)
    # RNN
    elif args.model == 'LSTM' or args.model == 'GRU':
        model = Rnn(rnn_type=args.model, input_size=args.input_size, hidden_size=args.hidden_size,
                    batch_size=args.batch_size,
                    num_classes=args.n_classes, num_layers=args.n_layers,
                    final_layer=args.final_layer).to(device)
    # C3D

    elif args.model == 'C3D':
        if args.pretrained:
            model = C3D(rgb=rgb, num_classes=args.n_classes)


            # modifico parametri
            print('ok')

            model.load_state_dict(torch.load('c3d_weights/c3d.pickle', map_location=device), strict=False)
            # # for params in model.parameters():
            #     # params.requires_grad = False

            model.conv1 = nn.Conv3d(1 if not rgb else 3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
            # tolgo fc6 perchè 30 frames
            model.fc6 = nn.Linear(16384, 4096)  # num classes 28672 (112*200)
            model.fc7 = nn.Linear(4096, 4096)  # num classes
            model.fc8 = nn.Linear(4096, n_classes)  # num classes

            model = model.to(device)


    # Conv-lstm
    elif args.model == 'Conv-lstm':
        model = ConvLSTM(input_size=(args.input_size, args.input_size),
                         input_dim=1 if not rgb else 3,
                         hidden_dim=[64, 64, 128],
                         kernel_size=(3, 3),
                         num_layers=args.n_layers,
                         batch_first=True,
                         ).to(device)
    elif args.model == 'DeepConvLstm':
        model = DeepConvLstm(input_channels_conv=1 if not rgb else 3, input_size_conv=args.input_size, n_classes=12,
                             n_frames=args.n_frames, batch_size=args.batch_size).to(device)

    elif args.model == 'ConvGRU':
        model = ConvGRU(input_size=40, hidden_sizes=[64, 128],
                        kernel_sizes=[3, 3], n_layers=2).to(device)

    else:
        raise NotImplementedError

    if args.opt == 'SGD':
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
        # optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum)

    elif args.opt == 'Adam':
        optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    loss_function = nn.CrossEntropyLoss().to(device)

    start_epoch = 0
    if args.resume:
        checkpoint = torch.load("/projects/fabio/weights/gesture_recog_weights/checkpoint{}.pth.tar".format(args.model))
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        start_epoch = checkpoint['epoch']

        print("Resuming state:\n-epoch: {}\n{}".format(start_epoch, model))

    #name experiment
    personal_name = "{}_{}_{}".format(args.model, args.mode, args.exp_name)
    info_experiment = "{}".format(personal_name)
    log_dir = "/projects/fabio/logs/gesture_recog_logs/exps"
    weight_dir = personal_name
    log_file = open("{}/{}.txt".format("/projects/fabio/logs/gesture_recog_logs/txt_logs", personal_name), 'w')
    log_file.write(personal_name + "\n\n")
    if personal_name:
        exp_name = (("exp_{}_{}".format(time.strftime("%c"), personal_name)).replace(" ", "_")).replace(":", "-")
    else:
        exp_name = (("exp_{}".format(time.strftime("%c"), personal_name)).replace(" ", "_")).replace(":", "-")
    writer = SummaryWriter("{}".format(os.path.join(log_dir, exp_name)))

    # add info experiment
    writer.add_text('Info experiment',
                    "model:{}"
                    "\n\npretrained:{}"
                    "\n\nbatch_size:{}"
                    "\n\nepochs:{}"
                    "\n\noptimizer:{}"
                    "\n\nlr:{}"
                    "\n\ndn_lr:{}"
                    "\n\nmomentum:{}"
                    "\n\nweight_decay:{}"
                    "\n\nn_frames:{}"
                    "\n\ninput_size:{}"
                    "\n\nhidden_size:{}"
                    "\n\ntracking_data_mode:{}"
                    "\n\nn_classes:{}"
                    "\n\nmode:{}"
                    "\n\nn_workers:{}"
                    "\n\nseed:{}"
                    "\n\ninfo:{}"
                    "".format(args.model, args.pretrained, args.batch_size, args.epochs, args.opt, args.lr, args.dn_lr, args.momentum,
                              args.weight_decay, args.n_frames, args.input_size, args.hidden_size, args.tracking_data_mod,
                              args.n_classes, args.mode, args.n_workers, args.seed, info_experiment))

    trainer = Trainer(model=model, loss_function=loss_function, optimizer=optimizer, train_loader=train_loader,
                      validation_loader=validation_loader,
                      batch_size=args.batch_size, initial_lr=args.lr,  device=device, writer=writer, personal_name=personal_name, log_file=log_file,
                      weight_dir=weight_dir, dynamic_lr=args.dn_lr)


    print("experiment: {}".format(personal_name))
    start = time.time()
    for ep in range(start_epoch, args.epochs):
        trainer.train(ep)
        trainer.val(ep)

    # display classes results
    classes = ['g0', 'g1', 'g2', 'g3', 'g4', 'g5', 'g6', 'g7', 'g8', 'g9', 'g10', 'g11']
    for i in range(args.n_classes):
        print('Accuracy of {} : {:.3f}%%'.format(
            classes[i], 100 * trainer.class_correct[i] / trainer.class_total[i]))

    end = time.time()
    h, rem = divmod(end - start, 3600)
    m, s, = divmod(rem, 60)
    print("\nelapsed time (ep.{}):{:0>2}:{:0>2}:{:05.2f}".format(args.epochs, int(h), int(m), s))


    # writing accuracy on file

    log_file.write("\n\n")
    for i in range(args.n_classes):
        log_file.write('Accuracy of {} : {:.3f}%\n'.format(
            classes[i], 100 * trainer.class_correct[i] / trainer.class_total[i]))
    log_file.close()
    
    w_locals = [w_glob for i in range(args.num_nodes)]

    for iter in range(args.epochs):
        loss_locals = []
        for idx in range(args.num_nodes):
            #import pdb; pdb.set_trace()
            local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[idx])
            w, loss = local.train(net=copy.deepcopy(net_glob).to(args.device), global_grad_data=w_glob_grad)
            w_locals[idx] = copy.deepcopy(w)
            loss_locals.append(copy.deepcopy(loss))
        # update global weights
        w_glob = cal_ave_weight(w_locals)

        # copy weight to net_glob
        net_glob.load_state_dict(w_glob)

        # print loss
        loss_avg = sum(loss_locals) / len(loss_locals)
        writer_loss.add_scalar("train_loss", loss_avg, iter)
        print('Round {:3d}, Average loss {:.3f}'.format(iter, loss_avg))

        #test after a round
        net_glob.eval()
        acc_test, loss_test = test_img(net_glob, dataset_test, args)
        writer_acc.add_scalar("test_acc", acc_test, iter)
        #loss_train.append(loss_avg)
    writer_loss.close()
    
    # testing
    net_glob.eval()
Exemplo n.º 7
0
                                         num_workers=2)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
           'ship', 'truck')

# Model
print('==> Building model..')
model = LeNet(3, len(classes)).to(device)

if device.type == 'cuda':
    model = torch.nn.DataParallel(model)
    cudnn.benchmark = True

if os.path.isfile(ckpt_file):
    checkpoint = torch.load(ckpt_file)
    model.load_state_dict(checkpoint['net'])
    best_acc = checkpoint['acc']
    start_epoch = checkpoint['epoch']

criterion = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(),
                      lr=1e-3,
                      momentum=0.9,
                      weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')


# Training
def train(epoch):
    print('\nEpoch: %d' % epoch)
    model.train()
Exemplo n.º 8
0
def main():
    opt = Parser(train=False).get()

    # dataset and data loader
    _, val_loader, adv_val_loader, _, num_classes = \
            load_dataset(opt.dataset, opt.batch_size, opt.data_root,
                         False, 0.0, opt.num_val_samples,
                         workers=4)

    # model
    if opt.arch == 'lenet':
        model = LeNet(num_classes)
    elif opt.arch == 'resnet':
        model = ResNetv2_20(num_classes)
    else:
        raise NotImplementedError

    # move model to device
    model.to(opt.device)

    # load trained weight
    try:
        model.load_state_dict(torch.load(opt.weight_path))
    except:
        model_weight = convert_model_from_parallel(opt.weight_path)
        model.load_state_dict(model_weight)

    # criterion
    criterion = nn.CrossEntropyLoss()

    # advertorch attacker
    if opt.attack == 'pgd':
        attacker = PGDAttack(model,
                             loss_fn=criterion,
                             eps=opt.eps / 255,
                             nb_iter=opt.num_steps,
                             eps_iter=opt.eps_iter / 255,
                             rand_init=True,
                             clip_min=opt.clip_min,
                             clip_max=opt.clip_max,
                             ord=np.inf,
                             targeted=False)
    else:
        raise NotImplementedError

    # trainer
    trainer = Trainer(opt, model, criterion, attacker)
    trainer.print_freq = -1

    # validation
    val_losses, val_acc1s, val_acc5s = \
        trainer.validate(val_loader)
    aval_losses, aval_acc1s, aval_acc5s = \
        trainer.adv_validate(adv_val_loader)

    print('[model] {}'.format(opt.weight_path))
    print('[standard]\n'
          'loss: {:.4f} | acc1: {:.2f}% | acc5: {:.2f}%'
          '\n[adversarial]\n'
          'loss: {:.4f} | acc1: {:.2f}% | acc5: {:.2f}%'.format(
              val_losses['val'].avg, val_acc1s['val'].avg,
              val_acc5s['val'].avg, aval_losses['aval'].avg,
              aval_acc1s['aval'].avg, aval_acc5s['aval'].avg))
Exemplo n.º 9
0
                    cols=4):
    images = images.squeeze()  # 16x28x28
    plt.figure(figsize=(10, 12))
    #     plt.tight_layout()

    for i in range(batch_size):
        lbl = labels[i].item()
        true_lbl = true_labels[i].item()
        plt.subplot(rows, cols, i + 1)  # 1 ~ 4
        plt.imshow(images[i, :, :].numpy(), cmap='gray')
        plt.title('{} -> {}'.format(true_lbl, lbl))
        plt.axis('off')
    plt.savefig('../plot.png')
    # plt.show()


if __name__ == '__main__':
    model = LeNet()

    epoch = 12
    ckpt = torch.load('../ckpts/LeNet_e{:02}.pt'.format(epoch))
    model.load_state_dict(ckpt)

    _, dataset = get_dataset('mnist')
    imgs, true_labels = next(iter(dataset))
    labels = model(imgs)
    labels = torch.argmax(labels, dim=1)
    batch_size = dataset.batch_size

    plot_with_label(imgs, labels, true_labels, batch_size, batch_size**0.5,
                    batch_size**0.5)
Exemplo n.º 10
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='Adversarial MNIST Example')
    parser.add_argument('--use-pretrained',
                        action='store_true',
                        default=False,
                        help='uses the pretrained model')
    parser.add_argument('--adversarial-training',
                        action='store_true',
                        default=False,
                        help='takes the adversarial training process')
    parser.add_argument('--batch-size',
                        type=int,
                        default=64,
                        metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=512,
                        metavar='N',
                        help='input batch size for testing (default: 512)')
    args = parser.parse_args()

    # Define what device we are using
    use_cuda = torch.cuda.is_available()
    print("CUDA Available: ", use_cuda)
    device = torch.device("cuda" if use_cuda else "cpu")

    # MNIST Test dataset and dataloader declaration
    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(datasets.MNIST(
        '../data',
        train=True,
        download=True,
        transform=transforms.Compose([transforms.ToTensor()])),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)
    test_loader = torch.utils.data.DataLoader(datasets.MNIST(
        '../data',
        train=False,
        transform=transforms.Compose([transforms.ToTensor()])),
                                              batch_size=args.test_batch_size,
                                              shuffle=True,
                                              **kwargs)

    # Initialize the network
    model = LeNet().to(device)
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

    if args.use_pretrained:
        print('Loading the pretrained model')
        model.load_state_dict(
            torch.load('resources/lenet_mnist_model.bin', map_location='cpu'))
    else:
        print('Training on the MNIST dataset')
        model_train(model, train_loader, F.nll_loss, optimizer, epochs=10)

    print('Evaluating the neural network')
    # Evaluate the accuracy of the MNIST model on clean examples
    accuracy, _ = model_eval(model, test_loader, F.nll_loss)
    print('Test accuracy on clean examples: ' + str(accuracy))

    # Evaluate the accuracy of the MNIST model on adversarial examples
    accuracy, _ = model_eval(model,
                             test_loader,
                             F.nll_loss,
                             attack_method=fgsm_attack)
    print('Test accuracy on adversarial examples: ' + str(accuracy))

    if args.adversarial_training:
        print("Repeating the process, with adversarial training")
        # Perform adversarial training
        model_train(model,
                    train_loader,
                    F.nll_loss,
                    optimizer,
                    epochs=10,
                    attack_method=fgsm_attack)

        # Evaluate the accuracy of the adversarially trained MNIST model on
        # clean examples
        accuracy, _ = model_eval(model, test_loader, F.nll_loss)
        print('Test accuracy on clean examples: ' + str(accuracy))

        # Evaluate the accuracy of the adversarially trained MNIST model on
        # adversarial examples
        accuracy_adv, _ = model_eval(model,
                                     test_loader,
                                     F.nll_loss,
                                     attack_method=fgsm_attack)
        print('Test accuracy on adversarial examples: ' + str(accuracy_adv))
Exemplo n.º 11
0
def initiate_mnist(dataset, random_model=False):

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}

    if dataset == "mnist":
        train_loader = torch.utils.data.DataLoader(datasets.MNIST(
            root='./data',
            train=True,
            download=True,
            transform=transforms.Compose([transforms.ToTensor()]),
        ),
                                                   batch_size=50,
                                                   shuffle=True,
                                                   **kwargs)

        test_loader = torch.utils.data.DataLoader(datasets.MNIST(
            './data',
            train=False,
            download=True,
            transform=transforms.Compose([transforms.ToTensor()]),
        ),
                                                  batch_size=10000,
                                                  shuffle=False,
                                                  **kwargs)

    elif dataset == "fashion":
        train_loader = torch.utils.data.DataLoader(datasets.FashionMNIST(
            root='./data',
            train=True,
            download=True,
            transform=transforms.Compose([transforms.ToTensor()]),
        ),
                                                   batch_size=50,
                                                   shuffle=True,
                                                   **kwargs)

        test_loader = torch.utils.data.DataLoader(datasets.FashionMNIST(
            './data',
            train=False,
            download=True,
            transform=transforms.Compose([transforms.ToTensor()]),
        ),
                                                  batch_size=10000,
                                                  shuffle=False,
                                                  **kwargs)
    classes = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']

    def show_images(images, labels):
        num_img = len(images)
        np_images = [img.numpy() for img in images]
        fig, axes = plt.subplots(nrows=1, ncols=num_img, figsize=(20, 45))

        for i, ax in enumerate(axes.flat):
            ax.set_axis_off()
            im = ax.imshow(np_images[i], vmin=0., vmax=1.)
            ax.set_title(f'{labels[i]}')
            plt.axis("off")

        fig.subplots_adjust(bottom=0.1,
                            top=0.9,
                            left=0.1,
                            right=0.8,
                            wspace=0.1,
                            hspace=0.25)

        plt.show()

    images, labels = iter(train_loader).next()
    num_img_to_plot = 9
    images = [images[i].permute(1, 2, 0) for i in range(num_img_to_plot)]
    labels = [classes[i] for i in labels[:num_img_to_plot]]
    # show_images(images, labels)

    model = LeNet().to(device)
    model_2 = LeNet().to(device)
    if not random_model:
        if not use_cuda:
            model.load_state_dict(
                torch.load("checkpoints/" + dataset + "/CNN.pt",
                           map_location='cpu'))
            model_2.load_state_dict(
                torch.load("checkpoints/" + dataset + "/mnist_PGD_e_20.pt",
                           map_location='cpu'))
        else:
            model.load_state_dict(
                torch.load("checkpoints/" + dataset + "/CNN.pt"))
            model_2.load_state_dict(
                torch.load("checkpoints/" + dataset + "/mnist_PGD_e_20.pt"))
        # model.load_state_dict(torch.load("checkpoints/CNN.pt"))
        model.eval()
        model_2.eval()
        test_loss, test_acc = test(model, test_loader)
        print(f'Clean \t loss: {test_loss:.4f} \t acc: {test_acc:.4f}')

    return model, model_2, train_loader, test_loader
Exemplo n.º 12
0
class Reptile(object):
    def __init__(self, args):
        self.args = args
        self._load_model()

        self.model.to(args.device)
        self.task_generator = TaskGen(args.max_num_classes)
        self.outer_stepsize = args.outer_stepsize
        self.criterion = nn.CrossEntropyLoss()
        # self.optimizer = optim.Adam(self.model.parameters(), lr=args.inner_stepsize)

    def _load_model(self):
        self.model = LeNet()
        self.current_iteration = 0
        if os.path.exists(self.args.model_path):
            try:
                print("Loading model from: {}".format(self.args.model_path))
                self.model.load_state_dict(torch.load(self.args.model_path))
                self.current_iteration = joblib.load("{}.iter".format(
                    self.args.model_path))
            except Exception as e:
                print(
                    "Exception: {}\nCould not load model from {} - starting from scratch"
                    .format(e, self.args.model_path))

    def inner_training(self, x, y, num_iterations):
        """
        Run training on task
        """
        x, y = shuffle_unison(x, y)

        self.model.train()

        x = torch.tensor(x, dtype=torch.float, device=self.args.device)
        y = torch.tensor(y, dtype=torch.float, device=self.args.device)

        total_loss = 0
        for _ in range(num_iterations):
            start = np.random.randint(0,
                                      len(x) - self.args.inner_batch_size + 1)

            self.model.zero_grad()
            # self.optimizer.zero_grad()
            outputs = self.model(x[start:start + self.args.inner_batch_size])
            # print("output: {} - y: {}".format(outputs.shape, y.shape))
            loss = self.criterion(
                outputs,
                Variable(y[start:start + self.args.inner_batch_size].long()))
            total_loss += loss
            loss.backward()
            # self.optimizer.step()
            # Similar to calling optimizer.step()
            for param in self.model.parameters():
                param.data -= self.args.inner_stepsize * param.grad.data
        return total_loss / self.args.inner_iterations

    def _meta_gradient_update(self, iteration, num_classes, weights_before):
        """
        Interpolate between current weights and trained weights from this task
        I.e. (weights_before - weights_after) is the meta-gradient

            - iteration: current iteration - used for updating outer_stepsize
            - num_classes: current classifier number of classes
            - weights_before: state of weights before inner steps training
        """
        weights_after = self.model.state_dict()
        outer_stepsize = self.outer_stepsize * (
            1 - iteration / self.args.n_iterations)  # linear schedule

        self.model.load_state_dict({
            name: weights_before[name] +
            (weights_after[name] - weights_before[name]) * outer_stepsize
            for name in weights_before
        })

    def meta_training(self):
        # Reptile training loop
        total_loss = 0
        try:
            while self.current_iteration < self.args.n_iterations:
                # Generate task
                data, labels, original_labels, num_classes = self.task_generator.get_train_task(
                    args.num_classes)

                weights_before = deepcopy(self.model.state_dict())
                loss = self.inner_training(data, labels,
                                           self.args.inner_iterations)
                total_loss += loss
                if self.current_iteration % self.args.log_every == 0:
                    print("-----------------------------")
                    print("iteration               {}".format(
                        self.current_iteration + 1))
                    print("Loss: {:.3f}".format(total_loss /
                                                (self.current_iteration + 1)))
                    print("Current task info: ")
                    print("\t- Number of classes: {}".format(num_classes))
                    print("\t- Batch size: {}".format(len(data)))
                    print("\t- Labels: {}".format(set(original_labels)))

                    self.test()

                self._meta_gradient_update(self.current_iteration, num_classes,
                                           weights_before)

                self.current_iteration += 1

            torch.save(self.model.state_dict(), self.args.model_path)

        except KeyboardInterrupt:
            print("Manual Interrupt...")
            print("Saving to: {}".format(self.args.model_path))
            torch.save(self.model.state_dict(), self.args.model_path)
            joblib.dump(self.current_iteration,
                        "{}.iter".format(self.args.model_path),
                        compress=1)

    def predict(self, x):
        self.model.eval()
        x = torch.tensor(x, dtype=torch.float, device=self.args.device)
        outputs = self.model(x)
        return outputs.cpu().data.numpy()

    def test(self):
        """
        Run tests
            1. Create task from test set.
            2. Reload model
            3. Check accuracy on test set
            4. Train for one or more iterations on one task
            5. Check accuracy again on test set
        """

        test_data, test_labels, _, _ = self.task_generator.get_test_task(
            selected_labels=[1, 2, 3, 4,
                             5], num_samples=-1)  # all available samples
        predicted_labels = np.argmax(self.predict(test_data), axis=1)
        accuracy = np.mean(1 * (predicted_labels == test_labels)) * 100
        print(
            "Accuracy before few shots learning (a.k.a. zero-shot learning): {:.2f}%\n----"
            .format(accuracy))

        weights_before = deepcopy(
            self.model.state_dict())  # save snapshot before evaluation
        for i in range(1, 5):
            enroll_data, enroll_labels, _, _ = self.task_generator.get_enroll_task(
                selected_labels=[1, 2, 3, 4, 5], num_samples=i)
            self.inner_training(enroll_data, enroll_labels,
                                self.args.inner_iterations_test)
            predicted_labels = np.argmax(self.predict(test_data), axis=1)
            accuracy = np.mean(1 * (predicted_labels == test_labels)) * 100

            print("Accuracy after {} shot{} learning: {:.2f}%)".format(
                i, "" if i == 1 else "s", accuracy))

        self.model.load_state_dict(weights_before)  # restore from snapshot
Exemplo n.º 13
0
                               train=True,
                               download=True,
                               transform=transforms.ToTensor())
loader_train = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=param['batch_size'],
                                           shuffle=True)
test_dataset = datasets.MNIST(root='../data/',
                              train=False,
                              download=True,
                              transform=transforms.ToTensor())
loader_test = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=param['test_batch_size'],
                                          shuffle=True)

model = LeNet()
model.load_state_dict(
    torch.load('models/lenet_pretrained.pkl', map_location='cpu'))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
print("--- Accuracy of Pretrained Model ---")
test(model, loader_test)

# pruning
masks = lenet_prune()
model.set_masks(masks)
print("--- Accuracy After Pruning ---")
test(model, loader_test)

# Retraining
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(model.parameters(),
                                lr=param['learning_rate'],