] torch.set_grad_enabled(False) text2mel = Text2Mel(vocab).eval() last_checkpoint_file_name = get_last_checkpoint_file_name( os.path.join(hp.logdir, '%s-text2mel' % args.dataset)) # last_checkpoint_file_name = 'logdir/%s-text2mel/step-020K.pth' % args.dataset if last_checkpoint_file_name: print("loading text2mel checkpoint '%s'..." % last_checkpoint_file_name) load_checkpoint(last_checkpoint_file_name, text2mel, None) else: print("text2mel not exits") sys.exit(1) ssrn = SSRN().eval() last_checkpoint_file_name = get_last_checkpoint_file_name( os.path.join(hp.logdir, '%s-ssrn' % args.dataset)) # last_checkpoint_file_name = 'logdir/%s-ssrn/step-005K.pth' % args.dataset if last_checkpoint_file_name: print("loading ssrn checkpoint '%s'..." % last_checkpoint_file_name) load_checkpoint(last_checkpoint_file_name, ssrn, None) else: print("ssrn not exits") sys.exit(1) # synthetize by one by one because there is a batch processing bug! for i in range(len(SENTENCES)): sentences = [SENTENCES[i]] max_N = len(SENTENCES[i])
# "A pot of tea helps to pass the evening.", # "Smoky fires lack flame and heat.", # "The soft cushion broke the man's fall. But you can't be serious, can you? Right, This is the sentence. So thank me, please.", # "The salt breeze came across from the sea.", # "The girl at the booth sold fifty bonds." ] torch.set_grad_enabled(False) t2m_list = glob.glob(f'logdir/LJ-lj_fixed.csv-256-0.005-64-text2mel/step-*.pth') # t2m_list = ['logdir/Keira-Keira_all.csv-512-0.005-16-text2mel/step-010000.pth'] # t2m_list = ['logdir/Geralt-Geralt_s5_no_a.csv-256-0.005-32-text2mel/step-093500.pth'] # 'logdir/Geralt-512-0.005-24-text2mel/step-073500 (copy).pth', # 'logdir/Geralt-512-0.005-24-text2mel/step-063000 (copy).pth'] ssrn = SSRN().to(device).eval() print("loading ssrn...") load_checkpoint('trained/ssrn/lj/step-140K.pth', ssrn, None) # last_checkpoint_file_name = get_last_checkpoint_file_name(os.path.join(hp.logdir, '%s-ssrn' % args.dataset)) # last_checkpoint_file_name = 'logdir/%s-ssrn/step-005K.pth' % args.dataset # if last_checkpoint_file_name: # print("loading ssrn checkpoint '%s'..." % last_checkpoint_file_name) # load_checkpoint(last_checkpoint_file_name, ssrn, None) # else: # print("ssrn not exits") # sys.exit(1) if not os.path.isdir(f'samples'): os.mkdir(f'samples') for t2m in t2m_list: filename = os.path.splitext(os.path.basename(t2m))[0]
use_gpu = torch.cuda.is_available() print('use_gpu', use_gpu) if use_gpu: torch.backends.cudnn.benchmark = True train_data_loader = SSRNDataLoader(ssrn_dataset=SpeechDataset(['mags', 'mels']), batch_size=24, mode='train') valid_data_loader = SSRNDataLoader(ssrn_dataset=SpeechDataset(['mags', 'mels']), batch_size=24, mode='valid') ssrn = SSRN().cuda() optimizer = torch.optim.Adam(ssrn.parameters(), lr=hp.ssrn_lr) start_timestamp = int(time.time() * 1000) start_epoch = 0 global_step = 0 logger = Logger(args.dataset, 'ssrn') # load the last checkpoint if exists last_checkpoint_file_name = get_last_checkpoint_file_name(logger.logdir) if last_checkpoint_file_name: print("loading the last checkpoint: %s" % last_checkpoint_file_name) start_epoch, global_step = load_checkpoint(last_checkpoint_file_name, ssrn, optimizer)
torch.set_grad_enabled(False) text2mel = Text2Mel(vocab).eval() text2mel = text2mel.cuda() last_checkpoint_file_name = get_last_checkpoint_file_name( os.path.join(hp.logdir, '%s-text2mel' % args.dataset)) # last_checkpoint_file_name = 'logdir/%s-text2mel/step-020K.pth' % args.dataset if last_checkpoint_file_name: print("loading text2mel checkpoint '%s'..." % last_checkpoint_file_name) load_checkpoint(last_checkpoint_file_name, text2mel, None) else: print("text2mel not exits") sys.exit(1) ssrn = SSRN().eval() ssrn = ssrn.cuda() last_checkpoint_file_name = get_last_checkpoint_file_name( os.path.join(hp.logdir, '%s-ssrn' % args.dataset)) # last_checkpoint_file_name = 'logdir/%s-ssrn/step-005K.pth' % args.dataset if last_checkpoint_file_name: print("loading ssrn checkpoint '%s'..." % last_checkpoint_file_name) load_checkpoint(last_checkpoint_file_name, ssrn, None) else: print("ssrn not exits") sys.exit(1) # synthetize by one by one because there is a batch processing bug! for i in range(len(SENTENCES)): sentence = SENTENCES[i].split("|")[0]