Exemplo n.º 1
0
 ## VGGEncoder4
 vgg4 = load_lua('pretrained/encoder.t7', long_size=8)
 e4 = VGGEncoder()
 weight_assign(vgg4, e4, {
     'conv0': 0,
     'conv1_1': 2,
     'conv1_2': 5,
     'conv2_1': 9,
     'conv2_2': 12,
     'conv3_1': 16,
     'conv3_2': 19,
     'conv3_3': 22,
     'conv3_4': 25,
     'conv4_1': 29,
 })
 torch.save(e4.state_dict(), 'pretrained/encoder_pretrained.pth')
 
 ## VGGDecoder4
 inv4 = load_lua('pretrained/recon.t7', long_size=8)
 d4 = VGGDecoder(num_class=3,use_softmax=False)
 weight_assign(inv4, d4, {
     'conv4_1': 1,
     'conv3_4': 5,
     'conv3_3': 8,
     'conv3_2': 11,
     'conv3_1': 14,
     'conv2_2': 18,
     'conv2_1': 21,
     'conv1_2': 25,
     'conv1_1': 28,
 })
Exemplo n.º 2
0
    p_wct.e4.load_state_dict(torch.load('pth_models/vgg_normalised_conv4.pth'))
    p_wct.d4.load_state_dict(torch.load('pth_models/feature_invertor_conv4.pth'))


if __name__ == '__main__':
    if not os.path.exists('pth_models'):
        os.mkdir('pth_models')
    
    ## VGGEncoder1
    vgg1 = load_lua('models/vgg_normalised_conv1_1_mask.t7')
    e1 = VGGEncoder(1)
    weight_assign(vgg1, e1, {
        'conv0': 0,
        'conv1_1': 2,
    })
    torch.save(e1.state_dict(), 'pth_models/vgg_normalised_conv1.pth')
    
    ## VGGDecoder1
    inv1 = load_lua('models/feature_invertor_conv1_1_mask.t7')
    d1 = VGGDecoder(1)
    weight_assign(inv1, d1, {
        'conv1_1': 1,
    })
    torch.save(d1.state_dict(), 'pth_models/feature_invertor_conv1.pth')
    
    ## VGGEncoder2
    vgg2 = load_lua('models/vgg_normalised_conv2_1_mask.t7')
    e2 = VGGEncoder(2)
    weight_assign(vgg2, e2, {
        'conv0': 0,
        'conv1_1': 2,
Exemplo n.º 3
0
    p_wct.d4.load_state_dict(
        torch.load('pth_models/feature_invertor_conv4.pth'))


if __name__ == '__main__':
    if not os.path.exists('pth_models'):
        os.mkdir('pth_models')

    ## VGGEncoder1
    vgg1 = load_lua('models/vgg_normalised_conv1_1_mask.t7')
    e1 = VGGEncoder(1)
    weight_assign(vgg1, e1, {
        'conv0': 0,
        'conv1_1': 2,
    })
    torch.save(e1.state_dict(), 'pth_models/vgg_normalised_conv1.pth')

    ## VGGDecoder1
    inv1 = load_lua('models/feature_invertor_conv1_1_mask.t7')
    d1 = VGGDecoder(1)
    weight_assign(inv1, d1, {
        'conv1_1': 1,
    })
    torch.save(d1.state_dict(), 'pth_models/feature_invertor_conv1.pth')

    ## VGGEncoder2
    vgg2 = load_lua('models/vgg_normalised_conv2_1_mask.t7')
    e2 = VGGEncoder(2)
    weight_assign(vgg2, e2, {
        'conv0': 0,
        'conv1_1': 2,