args.checkpoint_dir = os.path.join(args.checkpoint_dir,
                                       args.time_id + '_' + args.identifier)
    args.log_dir = os.path.join(args.log_dir,
                                args.time_id + '_' + args.identifier)

    print(args.__dict__)

    if not os.path.exists(args.checkpoint_dir) and args.log == True:
        os.makedirs(args.checkpoint_dir)
        os.makedirs(args.log_dir)

    model_kwargs = {'vocab': load_vocab(args.vocab_json)}
    shared_model = VqaLstmCnnAttentionModel(**model_kwargs)
    if args.checkpoint_path != False:
        print('Loading params from checkpoint: %s' % args.checkpoint_path)
        shared_model.load_state_dict(checkpoint['state'])
    shared_model.share_memory()
    fgsm(0, args, shared_model, 0)
    torch.cuda.empty_cache()










Exemplo n.º 2
0
    shared_nav_model.share_memory()

    print('Loading navigation params from checkpoint: %s' %
          args.nav_checkpoint_path)
    shared_nav_model.load_state_dict(checkpoint['state'])

    # Load answering model
    print('Loading answering checkpoint from %s' % args.ans_checkpoint_path)
    ans_checkpoint = torch.load(args.ans_checkpoint_path,
                                map_location={'cuda:0': 'cpu'})

    ans_model_kwargs = {'vocab': load_vocab(args.vocab_json)}
    shared_ans_model = VqaLstmCnnAttentionModel(**ans_model_kwargs)

    shared_ans_model.share_memory()

    print('Loading params from checkpoint: %s' % args.ans_checkpoint_path)
    shared_ans_model.load_state_dict(ans_checkpoint['state'])

    if args.mode == 'eval':

        eval(0, args, shared_nav_model, shared_ans_model)

    elif args.mode == 'train':

        train(0, args, shared_nav_model, shared_ans_model)

    else:

        processes = []
Exemplo n.º 3
0
    print('Loading navigation params from checkpoint: %s' %
          args.nav_checkpoint_path)
    shared_nav_model.load_state_dict(checkpoint['state'])

    # Load answering model
    print('Loading answering checkpoint from %s' % args.ans_checkpoint_path)
    ans_checkpoint = torch.load(
        args.ans_checkpoint_path, map_location={
            'cuda:0': 'cpu'
        })

    ans_model_kwargs = {'vocab': load_vocab(args.vocab_json)}
    shared_ans_model = VqaLstmCnnAttentionModel(**ans_model_kwargs)

    shared_ans_model.share_memory()

    print('Loading params from checkpoint: %s' % args.ans_checkpoint_path)
    shared_ans_model.load_state_dict(ans_checkpoint['state'])

    if args.mode == 'eval':

        eval(0, args, shared_nav_model, shared_ans_model)

    elif args.mode == 'train':

        train(0, args, shared_nav_model, shared_ans_model)

    else:

        processes = []