Exemplo n.º 1
0
def p8():
    print('P8')
    Tsa = np.array([[0, -1, 0, 0],
                    [0, 0, -1, 0],
                    [1, 0, 0, 1],
                    [0, 0, 0, 1]])
    Rsa = Tsa[:3, :3]
    so3mat = mr.MatrixLog3(Rsa)
    expc3 = mr.so3ToVec(so3mat)
    omghat, theta = mr.AxisAng3(expc3)
    print(theta)
def transformToPose(T):
    """Converts a homogeneous transformation matrix to a 3D pose (Wx, Wy, Wz, x, y, z) 6-vector 

    :param: Homogeneous Transformation matrix corresponding to given pose
    :return pose: 2D pose [Wx, Wy, Wz, x, y, z]
                    Wx, Wy, Wz : Rotation angles
                    x, y, z : Position
    """
    R, position = mr.TransToRp(T)
    R_so3 = mr.MatrixLog3(R)
    rotation = mr.so3ToVec(R_so3)
    return np.concatenate((rotation, position))
def baseConfiguration(Tbase):
    """Computes the configuration of youBot base given a base transformation in space frame

    :param configuration: Transform of robot base in space frame
    :return: A 3-vector representing the current configuration of the robot base. 
                3 variables for the chassis configuration (theta, x, y), 
    """
    R, position = mr.TransToRp(Tbase)
    R_so3 = mr.MatrixLog3(R)
    rotation = mr.so3ToVec(R_so3)
    theta = rotation[2]
    x, y = position[0:2]
    return theta, x, y
def NextState(curConfig,controls,del_t,limits):
    nextState = []
    curJointConfig = np.array(curConfig[3:8])
    q_cur= np.array(curConfig[0:3])
    curWheelConfig = np.array(curConfig[8:])
    jointSpeeds = np.array(controls[0:5])
    u = np.array(controls[5:])

    ## checking limits
    for i in range(len(controls)): 
        if controls[i] > limits: controls[i] = limits
        elif controls[i] < -limits: controls[i] = -limits

    ## Euler step for joints and wheels
    nextJointConfig = curJointConfig + jointSpeeds*del_t
    nextWheelConfig = curWheelConfig + u*del_t

    ## YouBot Properties:
    l = 0.47/2
    w = 0.3/2
    r = 0.0475
    phi_k = q_cur[0]

    ## Odometry calculations for chassis Euler step
    F = (r/4)*np.array([[-1/(l+w), 1/(l+w), 1/(l+w),-1/(l+w)],[1, 1, 1, 1],[-1, 1, -1, 1]])
    del_theta = u*del_t
    Vb = np.dot(F,del_theta)

    Vb6 = np.array([0,0,Vb[0],Vb[1],Vb[2],0])
    [R,p] = mr.TransToRp(mr.MatrixExp6(mr.VecTose3(Vb6)))
    omg = mr.so3ToVec(mr.MatrixLog3(R))

    del_x = p[0]
    del_y = p[1]
    del_w = omg[2]

    if del_w == 0: del_qb = np.array([del_w,del_x,del_y])
    else: del_qb = np.array([del_w, \
                      (del_x*m.sin(del_w) + del_y*(m.cos(del_w)-1))/del_w, \
                      (del_y*m.sin(del_w) + del_y*(1-m.cos(del_w)))/del_w])

    del_q = np.dot(np.array([[1,0,0],[0,m.cos(phi_k),-m.sin(phi_k)],[0,m.sin(phi_k),m.cos(phi_k)]]), \
                   del_qb)
    q_next = q_cur + del_q

    nextConfig = [list(q_next),list(nextJointConfig),list(nextWheelConfig)]
    nextState = list(itertools.chain(*nextConfig))

    return nextState
Exemplo n.º 5
0
pb = np.append(pb, 1)
Tsb = mr.TransInv(Tbs)
pb = np.dot(Tsb, pb)
pb = np.delete(pb, 3)
print(pb)
# [1,5,-2]

print("Ex7, va:")
Tsa = mr.Adjoint(Tas)
va = np.dot(Tsa, vs)
print(va)
# [1,-3,-2,-3,-1,5]

print("Ex8, theta:")
MatLogTsa = mr.MatrixLog6(Tsa)
vec = mr.so3ToVec(MatLogTsa)
theta = mr.AxisAng6(vec)[-1]
print(theta)
# 2.094395102393196

print("Ex9, Matrix exponential:")
se3 = mr.VecTose3(stheta)
MatExp = mr.MatrixExp6(se3)
print(MatExp)
# [[-0.61727288,-0.70368982,0.35184491,1.05553472],[0.70368982,-0.2938183,0.64690915,1.94072745],[-0.35184491,0.64690915,0.67654542,-0.97036373],[0,0,0,1]]

print("Ex10, fb:")
Tbs = mr.Adjoint(Tbs)
Tsb = np.transpose(Tbs)
fb = np.dot(Tsb, fb)
print(fb)
H0 = np.array([[-5, 1, -1], [5, 1, 1], [5, 1, -1], [-5, 1, 1]])

u = np.array([-1.18, 0.68, 0.02, -0.52])

Hinverse = np.linalg.pinv(H0)
V = np.dot(Hinverse, u)
# print V

#Q5
V6 = np.array([0, 0, V[0], V[1], V[2], 0])
se3mat = mr.VecTose3(V6)
T = mr.MatrixExp6(se3mat)
R, p = mr.TransToRp(T)
so3mat = mr.MatrixLog3(R)
omega = mr.so3ToVec(so3mat)
# print p
# print omega

#Q06
F = np.array([[0, 0], [0, 0], [-0.25, 0.25], [0.25, 0.25], [0, 0], [0, 0]])
# Finding Tbe
omega = np.array([0, 0, math.pi / 2])
p = np.array([2, 3, 0])
so3mat = mr.VecToso3(omega)
R = mr.MatrixExp3(so3mat)
Tbe = mr.RpToTrans(R, p)
Teb = np.linalg.inv(Tbe)
Ad_Teb = mr.Adjoint(Teb)
Jbase = np.dot(Ad_Teb, F)
print Tbe
Exemplo n.º 7
0
# Getting angles of rotation
"""
* mr.MatrixLog3 takes R from SO3 to so3 (skew symmetric) in exponential coordinates
* mr.so3ToVec converts 3x3 skew symmetric matrix to 3-vector
* mr.AxisAng3 returns axis and rotation angle from 3-vector in exponential coordinates
"""

so3mat_s1 = mr.MatrixLog3(rs1)
so3mat_12 = mr.MatrixLog3(r12)
so3mat_23 = mr.MatrixLog3(r23)
so3mat_34 = mr.MatrixLog3(r34)
so3mat_45 = mr.MatrixLog3(r45)
so3mat_56 = mr.MatrixLog3(r56)
#so3mat_6b = mr.MatrixLog3(r6b)

so3ToVec_s1 = mr.so3ToVec(so3mat_s1)
so3ToVec_12 = mr.so3ToVec(so3mat_12)
so3ToVec_23 = mr.so3ToVec(so3mat_23)
so3ToVec_34 = mr.so3ToVec(so3mat_34)
so3ToVec_45 = mr.so3ToVec(so3mat_45)
so3ToVec_56 = mr.so3ToVec(so3mat_56)
#so3ToVec_6b = mr.so3ToVec(so3mat_6b)

theta_s1 = mr.AxisAng3(so3ToVec_s1)[1]
theta_12 = mr.AxisAng3(so3ToVec_12)[1]
theta_23 = mr.AxisAng3(so3ToVec_23)[1]
theta_34 = mr.AxisAng3(so3ToVec_34)[1]
theta_45 = mr.AxisAng3(so3ToVec_45)[1]
theta_56 = mr.AxisAng3(so3ToVec_56)[1]
#theta_6b = mr.AxisAng3(so3ToVec_6b)[1]
Exemplo n.º 8
0
    def registerLocalCloud(self, target, source):
        '''
        function: get local transformation matrix
        input: two clouds
        output: transformation from target cloud to source cloud
        '''
        # print("target: ",id(target))
        source_temp = copy.deepcopy(source)
        target_temp = copy.deepcopy(target)
        # print("target_temp: ",id(target_temp))
        # source_temp = source
        # target_temp = target
        source_temp = voxel_down_sample(source_temp, 0.004)
        target_temp = voxel_down_sample(target_temp, 0.004)

        estimate_normals(source_temp,
                         search_param=KDTreeSearchParamHybrid(radius=0.1,
                                                              max_nn=30))
        estimate_normals(target_temp,
                         search_param=KDTreeSearchParamHybrid(radius=0.1,
                                                              max_nn=30))

        current_transformation = np.identity(4)
        # use Point-to-plane ICP registeration to obtain initial pose guess
        result_icp_p2l = registration_icp(
            source_temp, target_temp, 0.02, current_transformation,
            TransformationEstimationPointToPlane())
        # 0.1 is searching distance

        #'''TEST
        # current_transformation = result_icp.transformation
        # result_icp = registration_icp(source, target, 0.1,
        #     current_transformation, TransformationEstimationPointToPlane())
        #'''

        print("----------------")
        print("initial guess from Point-to-plane ICP registeration")
        print(result_icp_p2l)
        print(result_icp_p2l.transformation)

        p2l_init_trans_guess = result_icp_p2l.transformation
        print("----------------")
        # print("Colored point cloud registration")

        ################
        #### testing registration
        ################
        # voxel_radius = [ 0.004,0.001 ];
        # max_iter = [ 50, 30 ];
        # current_transformation = p2l_init_trans_guess
        # for scale in range(2):
        #     iter = max_iter[scale]
        #     radius = voxel_radius[scale]
        #     source_down = voxel_down_sample(source_temp, radius)
        #     target_down = voxel_down_sample(target_temp, radius)
        #     estimate_normals(source_down, KDTreeSearchParamHybrid(
        #         radius = radius * 2, max_nn = 30))
        #     estimate_normals(target_down, KDTreeSearchParamHybrid(
        #         radius = radius * 2, max_nn = 30))
        #     result_icp = registration_colored_icp(source_down, target_down,
        #         radius, current_transformation,
        #         ICPConvergenceCriteria(relative_fitness = 1e-6,
        #         relative_rmse = 1e-6, max_iteration = iter))
        #     current_transformation = result_icp.transformation

        #################
        #### original one
        #################
        # result_icp = registration_colored_icp(source_temp, target_temp,
        #     0.001, p2l_init_trans_guess,
        #     ICPConvergenceCriteria(relative_fitness = 1e-6,
        #     relative_rmse = 1e-6, max_iteration = 50))
        #################
        #################
        #################

        #################
        #### double nomral ICP
        #################
        result_icp = registration_icp(source_temp, target_temp, 0.01,
                                      p2l_init_trans_guess,
                                      TransformationEstimationPointToPlane())
        #         result_icp = registration_icp(source_temp, target_temp, 0.002,
        #                 p2l_init_trans_guess, TransformationEstimationPointToPlane(),ICPConvergenceCriteria(relative_fitness = 1e-6,relative_rmse = 1e-6, max_iteration = 50))
        # #################
        #################
        #################

        # result_icp = registration_colored_icp(source, target,
        #     0.02, p2l_init_trans_guess)
        print(result_icp)
        print(result_icp.transformation)
        # print(result_icp.fitness)

        # draw_registration_result_original_color(
        #         source, target, result_icp.transformation)

        #### write intermediate result for test,
        #### but found it will make registration result worse...
        #### ---->>>> cause source.transform will change the source!!!!!!
        # source.transform(result_icp.transformation)
        # temp_cloud = target + source
        # write_point_cloud("/home/donyan/Desktop/kinect/src/scanner/src/temp/pointCloudInRviz/data/result/{}-{}.pcd".format(self.cloud_index,self.cloud_index-1), temp_cloud , write_ascii = False)

        # print("*****")
        # print(source)
        # print(target)

        # print(result_icp.correspondence_set)
        ######################################
        #####   original kick-out rule
        ######################################
        # self.goodResultFlag = True
        # if (result_icp.fitness < 0.9 * result_icp_p2l.fitness):
        #     return p2l_init_trans_guess           # when result of colored ICP is bad, use p2l ICP
        # else:
        #     return result_icp.transformation

        ######################################
        #####   kick-out rule
        ######################################
        #### New rule:
        #### 1/ rotation is out of plane (5 degree, or 0.087266 in radians);
        #### 2/ too big rotation;
        #### 3/ too big translation;

        # first calculate what is the rotation direction and rotation angle
        tf = result_icp.transformation
        R = tf[:3, :3]  # rotation matrix
        so3mat = MatrixLog3(R)
        omg = so3ToVec(so3mat)
        R_dir, theta = AxisAng3(omg)  # rotation direction
        # rotation angle (in radians)
        theta_degree = theta / np.pi * 180  # in degree
        angle_with_pl_norm = self.cal_angle(self.rotation_dir, R_dir)

        trans_tol = 0.5  # transformation tolerance
        rotation_tol = 30  # 30 degrees
        # angle_with_pl_norm_tol = 0.087266 # in radians (= 5 degrees)
        # angle_with_pl_norm_tol = 0.174533 # in radians (= 10 degrees)
        angle_with_pl_norm_tol = 0.35  # in radians (= 20 degrees)
        if ( tf[0,3] > trans_tol or tf[0,3] < -trans_tol or \
             tf[1,3] > trans_tol or tf[1,3] < -trans_tol or \
             tf[2,3] > trans_tol or tf[2,3] < -trans_tol ):
            self.goodResultFlag = False
            print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
            # print("here in 1 ")
            rospy.logwarn(
                'Something wrong with 1/ translation : (, turn back a little bit...'
            )
            rospy.logwarn('>> the translation is [{},{},{}]'.format(
                tf[0, 3], tf[1, 3], tf[2, 3]))
            return np.identity(4)
        elif ( theta_degree > rotation_tol or \
               theta_degree < - rotation_tol):
            self.goodResultFlag = False
            print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
            # print("here in 2 ")
            rospy.logwarn(
                'Something wrong with 2/ rotation angle : (, turn back a little bit...'
            )
            rospy.logwarn('>> the rotation angle is {} (in degrees)'.format(
                theta_degree))
            return np.identity(4)
        elif (angle_with_pl_norm > angle_with_pl_norm_tol):
            self.goodResultFlag = False
            print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
            print("here in 3 ")
            print(" angle with pl norm")
            print(angle_with_pl_norm)
            rospy.logwarn(
                'Something wrong with 3/ rotation axis : (, turn back a little bit...'
            )
            rospy.logwarn(
                '>> the rotation axis is {} (in radians) with plane normal'.
                format(angle_with_pl_norm))
            return np.identity(4)
        else:
            self.goodResultFlag = True
            print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
            # print("here in 4 ")
            return result_icp.transformation
Exemplo n.º 9
0
# [[0,-1,0],[1,0,0],[0,0,1]]

print("Ex5, pb:")
Rsb = mr.RotInv(Rbs)
pb = Rsb * pb
print(pb)
# [1,3,-2]

print("Ex7, wa:")
wa = Rsa * ws
print(wa)
# [1,3,2]

print("Ex8, theta:")
MatLogRsa = mr.MatrixLog3(Rsa)
vec = mr.so3ToVec(MatLogRsa)
theta = mr.AxisAng3(vec)[-1]
print(theta)
# 2.094395102393196

print("Ex9, Matrix exponential:")
skew = mr.VecToso3(wtheta)
MatExp = mr.MatrixExp3(skew)
print(MatExp)
# [[-0.2938183,0.64690915,0.70368982],[0.64690915,0.67654542,-0.35184491],[-0.70368982,0.35184491,-0.61727288]]

print("Ex10, skew.symmetric matrix:")
skewMat = mr.VecToso3(wskew)
print(skewMat)
# [[0,-0.5,2],[0.5,0,-1],[-2,1,0]]
from modern_robotics import MatrixExp3
from modern_robotics import so3ToVec
from modern_robotics import Adjoint
import numpy as np

#question 5
Vb = np.array([[0, -.33, -.25], [.33, 0, -.12], [.25, .12, 0]])

print(so3ToVec(MatrixExp3(Vb)))

#question 6
Teb = [[0, -1, 0, 2], [1, 0, 0, 3], [0, 0, 1, 0], [0, 0, 0, 1]]
r = .5
d = 1
F = [[-r / (2 * d), r / (2 * d)], [r / 2, r / 2]]
print(Adjoint(Teb))