Exemplo n.º 1
0
 def test_matrix2cube(self):
     """Test matrix2cube."""
     npt.assert_array_equal(
         transform.matrix2cube(self.matrix, self.cube[0].shape),
         self.cube,
         err_msg='Incorrect transformation: matrix2cube',
     )
Exemplo n.º 2
0
    def _op_method(self, input_data, extra_factor=1.0, rank=None):
        """Operator.

        This method returns the input data after the singular values have been
        thresholded.

        Parameters
        ----------
        input_data : numpy.ndarray
            Input data array
        extra_factor : float
            Additional multiplication factor (default is ``1.0``)
        rank: int, optional
            Estimation of the rank to save computation time in standard mode,
            if not set an internal estimation is used.

        Returns
        -------
        numpy.ndarray
            SVD thresholded data

        Raises
        ------
        ValueError
            if lowr_type is not in ``{'standard', 'ngole'}``
        """
        # Update threshold with extra factor.
        threshold = self.thresh * extra_factor
        if self.lowr_type == 'standard' and self.rank is None and rank is None:
            data_matrix = svd_thresh(
                cube2matrix(input_data),
                threshold,
                thresh_type=self.thresh_type,
            )
        elif self.lowr_type == 'standard':
            data_matrix, update_rank = svd_thresh_coef_fast(
                cube2matrix(input_data),
                threshold,
                n_vals=rank or self.rank,
                extra_vals=5,
                thresh_type=self.thresh_type,
            )
            self.rank = update_rank  # save for future use

        elif self.lowr_type == 'ngole':
            data_matrix = svd_thresh_coef(
                cube2matrix(input_data),
                self.operator,
                threshold,
                thresh_type=self.thresh_type,
            )
        else:
            raise ValueError('lowr_type should be standard or ngole')

        # Return updated data.
        return matrix2cube(data_matrix, input_data.shape[1:])
Exemplo n.º 3
0
def svd_thresh_coef(input_data, operator, threshold, thresh_type='hard'):
    """Threshold the singular values coefficients.

    This method thresholds the input data using singular value decomposition.

    Parameters
    ----------
    input_data : numpy.ndarray
        Input data array, 2D matrix
    operator : class
        Operator class instance
    threshold : float or numpy.ndarray
        Threshold value(s)
    thresh_type : {'hard', 'soft'}
        Type of noise to be added (default is ``'hard'``)

    Returns
    -------
    numpy.ndarray
        Thresholded data

    Raises
    ------
    TypeError
        If operator not callable

    """
    if not callable(operator):
        raise TypeError('Operator must be a callable function.')

    # Get SVD of data matrix
    u_vec, s_values, v_vec = calculate_svd(input_data)

    # Diagnalise s
    s_values = np.diag(s_values)

    # Compute coefficients
    a_matrix = np.dot(s_values, v_vec)

    # Get the shape of the array
    array_shape = np.repeat(np.int(np.sqrt(u_vec.shape[0])), 2)

    # Compute threshold matrix.
    ti = np.array([
        np.linalg.norm(elem)
        for elem in operator(matrix2cube(u_vec, array_shape))
    ])
    threshold *= np.repeat(ti, a_matrix.shape[1]).reshape(a_matrix.shape)

    # Threshold coefficients.
    a_new = thresh(a_matrix, threshold, thresh_type)

    # Return the thresholded image.
    return np.dot(u_vec, a_new)
Exemplo n.º 4
0
def svd_thresh_coef(data, operator, threshold, thresh_type='hard'):
    """Threshold the singular values coefficients

    This method thresholds the input data using singular value decomposition

    Parameters
    ----------
    data : numpy.ndarray
        Input data array, 2D matrix
    operator : class
        Operator class instance
    threshold : float or numpy.ndarray
        Threshold value(s)
    threshold_type : {'hard', 'soft'}
        Type of noise to be added (default is 'hard')

    Returns
    -------
    numpy.ndarray
        Thresholded data

    Raises
    ------
    ValueError
        For invalid string entry for n_pc

    """

    if not callable(operator):
        raise TypeError('Operator must be a callable function.')

    # Get SVD of data matrix
    u, s, v = calculate_svd(data)

    # Diagnalise s
    s = np.diag(s)

    # Compute coefficients
    a = np.dot(s, v)

    # Get the shape of the array
    array_shape = np.repeat(np.int(np.sqrt(u.shape[0])), 2)

    # Compute threshold matrix.
    ti = np.array(
        [np.linalg.norm(x) for x in operator(matrix2cube(u, array_shape))])
    threshold *= np.repeat(ti, a.shape[1]).reshape(a.shape)

    # Threshold coefficients.
    a_new = thresh(a, threshold, thresh_type)

    # Return the thresholded image.
    return np.dot(u, a_new)
Exemplo n.º 5
0
    def _op_method(self, input_data, extra_factor=1.0):
        """Operator.

        This method returns the input data after the singular values have been
        thresholded.

        Parameters
        ----------
        input_data : numpy.ndarray
            Input data array
        extra_factor : float
            Additional multiplication factor (default is ``1.0``)

        Returns
        -------
        numpy.ndarray
            SVD thresholded data

        """
        # Update threshold with extra factor.
        threshold = self.thresh * extra_factor

        if self.lowr_type == 'standard':
            data_matrix = svd_thresh(
                cube2matrix(input_data),
                threshold,
                thresh_type=self.thresh_type,
            )

        elif self.lowr_type == 'ngole':
            data_matrix = svd_thresh_coef(
                cube2matrix(input_data),
                self.operator,
                threshold,
                thresh_type=self.thresh_type,
            )

        # Return updated data.
        return matrix2cube(data_matrix, input_data.shape[1:])