def classifier_svmlight_linear_term_modular (fm_train_dna=traindna,fm_test_dna=testdna, \ label_train_dna=label_traindna,degree=3, \ C=10,epsilon=1e-5,num_threads=1): from modshogun import StringCharFeatures, BinaryLabels, DNA from modshogun import WeightedDegreeStringKernel try: from modshogun import SVMLight except ImportError: print("SVMLight is not available") exit(0) feats_train=StringCharFeatures(DNA) feats_train.set_features(fm_train_dna) feats_test=StringCharFeatures(DNA) feats_test.set_features(fm_test_dna) kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree) labels=BinaryLabels(label_train_dna) svm=SVMLight(C, kernel, labels) svm.set_qpsize(3) svm.set_linear_term(-numpy.array([1,2,3,4,5,6,7,8,7,6], dtype=numpy.double)); svm.set_epsilon(epsilon) svm.parallel.set_num_threads(num_threads) svm.train() kernel.init(feats_train, feats_test) out = svm.apply().get_labels() return out,kernel
def classifier_domainadaptationsvm_modular (fm_train_dna=traindna,fm_test_dna=testdna, \ label_train_dna=label_traindna, \ label_test_dna=label_testdna,fm_train_dna2=traindna2,fm_test_dna2=testdna2, \ label_train_dna2=label_traindna2,label_test_dna2=label_testdna2,C=1,degree=3): feats_train = StringCharFeatures(fm_train_dna, DNA) feats_test = StringCharFeatures(fm_test_dna, DNA) kernel = WeightedDegreeStringKernel(feats_train, feats_train, degree) labels = BinaryLabels(label_train_dna) svm = SVMLight(C, kernel, labels) svm.train() #svm.io.set_loglevel(MSG_DEBUG) ##################################### #print("obtaining DA SVM from previously trained SVM") feats_train2 = StringCharFeatures(fm_train_dna, DNA) feats_test2 = StringCharFeatures(fm_test_dna, DNA) kernel2 = WeightedDegreeStringKernel(feats_train, feats_train, degree) labels2 = BinaryLabels(label_train_dna) # we regularize against the previously obtained solution dasvm = DomainAdaptationSVM(C, kernel2, labels2, svm, 1.0) dasvm.train() out = dasvm.apply_binary(feats_test2) return out #,dasvm TODO
def classifier_svmlight_modular(fm_train_dna=traindat, fm_test_dna=testdat, label_train_dna=label_traindat, C=1.2, epsilon=1e-5, num_threads=1): from modshogun import StringCharFeatures, BinaryLabels, DNA from modshogun import WeightedDegreeStringKernel try: from modshogun import SVMLight except ImportError: print('No support for SVMLight available.') return feats_train = StringCharFeatures(DNA) feats_train.set_features(fm_train_dna) feats_test = StringCharFeatures(DNA) feats_test.set_features(fm_test_dna) degree = 20 kernel = WeightedDegreeStringKernel(feats_train, feats_train, degree) labels = BinaryLabels(label_train_dna) svm = SVMLight(C, kernel, labels) svm.set_epsilon(epsilon) svm.parallel.set_num_threads(num_threads) svm.train() kernel.init(feats_train, feats_test) svm.apply().get_labels() return kernel
def classifier_svmlight_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,C=1.2,epsilon=1e-5,num_threads=1): from modshogun import StringCharFeatures, BinaryLabels, DNA from modshogun import WeightedDegreeStringKernel try: from modshogun import SVMLight except ImportError: print('No support for SVMLight available.') return feats_train=StringCharFeatures(DNA) feats_train.set_features(fm_train_dna) feats_test=StringCharFeatures(DNA) feats_test.set_features(fm_test_dna) degree=20 kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree) labels=BinaryLabels(label_train_dna) svm=SVMLight(C, kernel, labels) svm.set_epsilon(epsilon) svm.parallel.set_num_threads(num_threads) svm.train() kernel.init(feats_train, feats_test) svm.apply().get_labels() return kernel
def svm_process(args_tuple): X_train, Y_train, X_test, Y_test, d, c = args_tuple kernel = WeightedDegreePositionStringKernel(X_train, X_train, d) kernel.set_shifts(np.ones(SEQ_LEN, dtype=np.int32)) kernel.set_position_weights(np.ones(SEQ_LEN, dtype=np.float64)) kernel.init(X_train, X_train) model = SVMLight(c, kernel, Y_train) model.train() Y_test_pred = model.apply(X_test).get_labels() Y_test_dist = model.apply(X_test).get_values() Y_test_proba = np.exp(Y_test_dist) / (1 + np.exp(Y_test_dist)) accuracy = np.where(Y_test_pred - Y_test == 0)[0].size * 1.0 / Y_test.size return (accuracy, Y_test_proba)
def svm_process(args_tuple): X_train, Y_train, X_test, Y_test, d, c = args_tuple kernel = WeightedDegreePositionStringKernel(X_train, X_train, d) kernel.set_shifts(np.ones(SEQ_LEN, dtype=np.int32)) kernel.set_position_weights(np.ones(SEQ_LEN, dtype=np.float64)) kernel.init(X_train, X_train) model = SVMLight(c, kernel, Y_train) model.train() Y_test_pred = model.apply(X_test).get_labels() Y_test_dist = model.apply(X_test).get_values() Y_test_proba = np.exp(Y_test_dist)/(1 + np.exp(Y_test_dist)) accuracy = np.where(Y_test_pred - Y_test == 0)[0].size*1.0/Y_test.size return (accuracy, Y_test_proba)
def classifier_svmlight_batch_linadd_modular( fm_train_dna, fm_test_dna, label_train_dna, degree, C, epsilon, num_threads ): from modshogun import StringCharFeatures, BinaryLabels, DNA from modshogun import WeightedDegreeStringKernel, MSG_DEBUG try: from modshogun import SVMLight except ImportError: print("No support for SVMLight available.") return feats_train = StringCharFeatures(DNA) # feats_train.io.set_loglevel(MSG_DEBUG) feats_train.set_features(fm_train_dna) feats_test = StringCharFeatures(DNA) feats_test.set_features(fm_test_dna) degree = 20 kernel = WeightedDegreeStringKernel(feats_train, feats_train, degree) labels = BinaryLabels(label_train_dna) svm = SVMLight(C, kernel, labels) svm.set_epsilon(epsilon) svm.parallel.set_num_threads(num_threads) svm.train() kernel.init(feats_train, feats_test) # print('SVMLight Objective: %f num_sv: %d' % \) # (svm.get_objective(), svm.get_num_support_vectors()) svm.set_batch_computation_enabled(False) svm.set_linadd_enabled(False) svm.apply().get_labels() svm.set_batch_computation_enabled(True) labels = svm.apply().get_labels() return labels, svm
def classifier_svmlight_batch_linadd_modular(fm_train_dna, fm_test_dna, label_train_dna, degree, C, epsilon, num_threads): from modshogun import StringCharFeatures, BinaryLabels, DNA from modshogun import WeightedDegreeStringKernel, MSG_DEBUG try: from modshogun import SVMLight except ImportError: print('No support for SVMLight available.') return feats_train = StringCharFeatures(DNA) #feats_train.io.set_loglevel(MSG_DEBUG) feats_train.set_features(fm_train_dna) feats_test = StringCharFeatures(DNA) feats_test.set_features(fm_test_dna) degree = 20 kernel = WeightedDegreeStringKernel(feats_train, feats_train, degree) labels = BinaryLabels(label_train_dna) svm = SVMLight(C, kernel, labels) svm.set_epsilon(epsilon) svm.parallel.set_num_threads(num_threads) svm.train() kernel.init(feats_train, feats_test) #print('SVMLight Objective: %f num_sv: %d' % \) # (svm.get_objective(), svm.get_num_support_vectors()) svm.set_batch_computation_enabled(False) svm.set_linadd_enabled(False) svm.apply().get_labels() svm.set_batch_computation_enabled(True) labels = svm.apply().get_labels() return labels, svm
def serialization_string_kernels_modular(n_data, num_shifts, size): """ serialize svm with string kernels """ ################################################## # set up toy data and svm train_xt, train_lt = generate_random_data(n_data) test_xt, test_lt = generate_random_data(n_data) feats_train = construct_features(train_xt) feats_test = construct_features(test_xt) max_len = len(train_xt[0]) kernel_wdk = WeightedDegreePositionStringKernel(size, 5) shifts_vector = numpy.ones(max_len, dtype=numpy.int32) * num_shifts kernel_wdk.set_shifts(shifts_vector) ######## # set up spectrum use_sign = False kernel_spec_1 = WeightedCommWordStringKernel(size, use_sign) kernel_spec_2 = WeightedCommWordStringKernel(size, use_sign) ######## # combined kernel kernel = CombinedKernel() kernel.append_kernel(kernel_wdk) kernel.append_kernel(kernel_spec_1) kernel.append_kernel(kernel_spec_2) # init kernel labels = BinaryLabels(train_lt) svm = SVMLight(1.0, kernel, labels) #svm.io.set_loglevel(MSG_DEBUG) svm.train(feats_train) ################################################## # serialize to file fn = "serialized_svm.bz2" #print("serializing SVM to file", fn) save(fn, svm) ################################################## # unserialize and sanity check #print("unserializing SVM") svm2 = load(fn) #print("comparing predictions") out = svm.apply(feats_test).get_labels() out2 = svm2.apply(feats_test).get_labels() # assert outputs are close for i in range(len(out)): assert abs(out[i] - out2[i] < 0.000001) #print("all checks passed.") return out, out2
def serialization_svmlight_modular(num, dist, width, C): from modshogun import MSG_DEBUG from modshogun import RealFeatures, BinaryLabels, DNA, Alphabet from modshogun import WeightedDegreeStringKernel, GaussianKernel try: from modshogun import SVMLight except ImportError: print("SVMLight not available") exit(0) from numpy import concatenate, ones from numpy.random import randn, seed import sys import types import random import bz2 import pickle import inspect def save(filename, myobj): """ save object to file using pickle @param filename: name of destination file @type filename: str @param myobj: object to save (has to be pickleable) @type myobj: obj """ try: f = bz2.BZ2File(filename, 'wb') except IOError as details: sys.stderr.write('File ' + filename + ' cannot be written\n') sys.stderr.write(details) return pickle.dump(myobj, f, protocol=2) f.close() def load(filename): """ Load from filename using pickle @param filename: name of file to load from @type filename: str """ try: f = bz2.BZ2File(filename, 'rb') except IOError as details: sys.stderr.write('File ' + filename + ' cannot be read\n') sys.stderr.write(details) return myobj = pickle.load(f) f.close() return myobj ################################################## # set up toy data and svm traindata_real = concatenate((randn(2, num) - dist, randn(2, num) + dist), axis=1) testdata_real = concatenate((randn(2, num) - dist, randn(2, num) + dist), axis=1) trainlab = concatenate((-ones(num), ones(num))) testlab = concatenate((-ones(num), ones(num))) feats_train = RealFeatures(traindata_real) feats_test = RealFeatures(testdata_real) kernel = GaussianKernel(feats_train, feats_train, width) #kernel.io.set_loglevel(MSG_DEBUG) labels = BinaryLabels(trainlab) svm = SVMLight(C, kernel, labels) svm.train() #svm.io.set_loglevel(MSG_DEBUG) ################################################## # serialize to file fn = "serialized_svm.bz2" #print("serializing SVM to file", fn) save(fn, svm) ################################################## # unserialize and sanity check #print("unserializing SVM") svm2 = load(fn) #print("comparing objectives") svm2.train() #print("objective before serialization:", svm.get_objective()) #print("objective after serialization:", svm2.get_objective()) #print("comparing predictions") out = svm.apply(feats_test).get_labels() out2 = svm2.apply(feats_test).get_labels() # assert outputs are close for i in range(len(out)): assert abs(out[i] - out2[i] < 0.000001) #print("all checks passed.") return True
def serialization_svmlight_modular (num, dist, width, C): from modshogun import MSG_DEBUG from modshogun import RealFeatures, BinaryLabels, DNA, Alphabet from modshogun import WeightedDegreeStringKernel, GaussianKernel from modshogun import SVMLight from numpy import concatenate, ones from numpy.random import randn, seed import sys import types import random import bz2 try: import cPickle as pickle except ImportError: import pickle as pickle import inspect def save(filename, myobj): """ save object to file using pickle @param filename: name of destination file @type filename: str @param myobj: object to save (has to be pickleable) @type myobj: obj """ try: f = bz2.BZ2File(filename, 'wb') except IOError as details: sys.stderr.write('File ' + filename + ' cannot be written\n') sys.stderr.write(details) return pickle.dump(myobj, f, protocol=2) f.close() def load(filename): """ Load from filename using pickle @param filename: name of file to load from @type filename: str """ try: f = bz2.BZ2File(filename, 'rb') except IOError as details: sys.stderr.write('File ' + filename + ' cannot be read\n') sys.stderr.write(details) return myobj = pickle.load(f) f.close() return myobj ################################################## # set up toy data and svm traindata_real = concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1) testdata_real = concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1); trainlab = concatenate((-ones(num), ones(num))); testlab = concatenate((-ones(num), ones(num))); feats_train = RealFeatures(traindata_real); feats_test = RealFeatures(testdata_real); kernel = GaussianKernel(feats_train, feats_train, width); #kernel.io.set_loglevel(MSG_DEBUG) labels = BinaryLabels(trainlab); svm = SVMLight(C, kernel, labels) svm.train() #svm.io.set_loglevel(MSG_DEBUG) ################################################## # serialize to file fn = "serialized_svm.bz2" #print("serializing SVM to file", fn) save(fn, svm) ################################################## # unserialize and sanity check #print("unserializing SVM") svm2 = load(fn) #print("comparing objectives") svm2.train() #print("objective before serialization:", svm.get_objective()) #print("objective after serialization:", svm2.get_objective()) #print("comparing predictions") out = svm.apply(feats_test).get_labels() out2 = svm2.apply(feats_test).get_labels() # assert outputs are close for i in range(len(out)): assert abs(out[i] - out2[i] < 0.000001) #print("all checks passed.") return True
def serialization_string_kernels_modular(n_data, num_shifts, size): """ serialize svm with string kernels """ ################################################## # set up toy data and svm train_xt, train_lt = generate_random_data(n_data) test_xt, test_lt = generate_random_data(n_data) feats_train = construct_features(train_xt) feats_test = construct_features(test_xt) max_len = len(train_xt[0]) kernel_wdk = WeightedDegreePositionStringKernel(size, 5) shifts_vector = numpy.ones(max_len, dtype=numpy.int32)*num_shifts kernel_wdk.set_shifts(shifts_vector) ######## # set up spectrum use_sign = False kernel_spec_1 = WeightedCommWordStringKernel(size, use_sign) kernel_spec_2 = WeightedCommWordStringKernel(size, use_sign) ######## # combined kernel kernel = CombinedKernel() kernel.append_kernel(kernel_wdk) kernel.append_kernel(kernel_spec_1) kernel.append_kernel(kernel_spec_2) # init kernel labels = BinaryLabels(train_lt); svm = SVMLight(1.0, kernel, labels) #svm.io.set_loglevel(MSG_DEBUG) svm.train(feats_train) ################################################## # serialize to file fn = "serialized_svm.bz2" #print("serializing SVM to file", fn) save(fn, svm) ################################################## # unserialize and sanity check #print("unserializing SVM") svm2 = load(fn) #print("comparing predictions") out = svm.apply(feats_test).get_labels() out2 = svm2.apply(feats_test).get_labels() # assert outputs are close for i in range(len(out)): assert abs(out[i] - out2[i] < 0.000001) #print("all checks passed.") return out,out2
def classifier_svmlight_linear_term_modular (fm_train_dna=traindna,fm_test_dna=testdna, \ label_train_dna=label_traindna,degree=3, \ C=10,epsilon=1e-5,num_threads=1): from modshogun import StringCharFeatures, BinaryLabels, DNA from modshogun import WeightedDegreeStringKernel try: from modshogun import SVMLight except ImportError: print("SVMLight is not available") exit(0) feats_train = StringCharFeatures(DNA) feats_train.set_features(fm_train_dna) feats_test = StringCharFeatures(DNA) feats_test.set_features(fm_test_dna) kernel = WeightedDegreeStringKernel(feats_train, feats_train, degree) labels = BinaryLabels(label_train_dna) svm = SVMLight(C, kernel, labels) svm.set_qpsize(3) svm.set_linear_term( -numpy.array([1, 2, 3, 4, 5, 6, 7, 8, 7, 6], dtype=numpy.double)) svm.set_epsilon(epsilon) svm.parallel.set_num_threads(num_threads) svm.train() kernel.init(feats_train, feats_test) out = svm.apply().get_labels() return out, kernel