return t1 * t2

def fn_get_A_tSZ(nu, nu_ref = 150e9):

	ysz_Tsz_conv_fac_ref = compton_y_to_delta_Tcmb(nu_ref)
	ysz_Tsz_conv_fac = compton_y_to_delta_Tcmb(nu)

	return ysz_Tsz_conv_fac/ysz_Tsz_conv_fac_ref


import numpy as np
import modules.scl_cmb as scl_cmb
import scipy as sc
from pylab import *

sims = scl_cmb.simulations()

h=6.62607004e-34 #Planck constant in m2 kg / s
k_B=1.38064852e-23 #Boltzmann constant in m2 kg s-2 / K-1
Tcmb = 2.73 #Kelvin

#pol = 1
which_exp = sys.argv[1]#'act'
pol = int(sys.argv[2])

print '\n\tExp = %s; Pol = %s\n' %(which_exp, pol)

if which_exp == 'spt':
	nuarr = [90e9,150e9, 220e9]
	#noisearr = [3,2,4]
	noisearr = [4.5,2.5,4.5]
"""
input: takes in mass(in 1e14 solar mass), redshift of a cluster, and params file

output: lensing convergence  profile in output.pkl.gz

ex: python PC_kappa_gen.py 2 0.7
"""

import modules.scl_cmb as scl_cmb, sys
import numpy as np, pickle, gzip
clus_mass = float(sys.argv[1]) * 1e14
clus_redshift = float(sys.argv[2])

sims = scl_cmb.simulations()

# read the params file

paramfile = 'params/params.txt'
params = np.recfromtxt(paramfile, usecols=[0], delimiter='=')
paramvals = np.recfromtxt(paramfile, usecols=[1], delimiter='=')
param_dict = {}
for p, pval in zip(params, paramvals):
    tmp = pval.strip()
    try:
        float(tmp)
        if tmp.find('.') > -1:
            param_dict[p.strip()] = float(tmp)
        else:
            param_dict[p.strip()] = int(tmp)
    except:
        if tmp == 'None':
Exemplo n.º 3
0
        y_ip = fitting_func(p1,p1,x_ip, cluster_mass,return_fit = 1)
        linds, uinds = np.where(x_ip<=cluster_mass)[0], np.where(x_ip>=cluster_mass)[0]
        value_for_error = 1.
        interp_type = 'linear'
        fninterp = interp1d(y_ip[linds], x_ip[linds], kind = interp_type, bounds_error = 0, fill_value = 0.)
        l_err = fninterp(value_for_error)
        fninterp = interp1d(y_ip[uinds], x_ip[uinds], kind = interp_type, bounds_error = 0, fill_value = 0.)
        u_err = fninterp(value_for_error)
        width = (u_err - l_err)/2.

    if width == 0:
        width = default_width
    return width


sims = scl.simulations()
sims.tqulen = 1
ipfolder = sys.argv[1]
noofsims = int(sys.argv[2])
minrich = float(sys.argv[3])
maxrich = float(sys.argv[4])



# Covariance matrix calculation
files = sorted(glob.glob('%s/st*'%(ipfolder)))
cov_file = '%s/kappa_COV_%s_simsJK.pkl.gz' %(ipfolder,noofsims)
data_for_cov = pickle.load(gzip.open(files[0]))
boxsize = data_for_cov['param_dict']['boxsize']
dx,dy = data_for_cov['param_dict']['reso_arcmin'],data_for_cov['param_dict']['reso_arcmin']
nx,ny = int(boxsize/dx), int(boxsize/dy)