Exemplo n.º 1
0
def transformer_tf_test():
    # Transformer tf
    transformer_tf = transformations_tf.Transformer()
    start_time = time.time()
    _ = transformer_test(transformer_tf)
    print("Time transformer_test(transformer_tf) %s" %
          utils.timer(start_time, time.time()),
          flush=True)
    """
Exemplo n.º 2
0
def transformer_traditional_test():
    # Transformer
    transformer = transformations.Transformer()
    start_time = time.time()
    _ = transformer_test(transformer)
    print("Time transformer_test(transformer) %s" %
          utils.timer(start_time, time.time()),
          flush=True)
    """
Exemplo n.º 3
0
def transformer_tf_returning_test():
    # Transformer tf
    transformer_tf = transformations_tf.Transformer()
    start_time = time.time()
    data = transformer_test(transformer_tf)
    print("Time transformer_test(transformer_tf) %s" %
          utils.timer(start_time, time.time()),
          flush=True)
    del transformer_tf
    return data
    transformer = Transformer()
    model = TransformODSimpleModel(data_loader=ztf_od_loader,
                                   transformer=transformer,
                                   input_shape=x_train.shape[1:])
    model.build(tuple([None] + list(x_train.shape[1:])))
    # print(model.network.model().summary())
    weight_path = os.path.join(PROJECT_PATH, 'results', model.name,
                               'my_checkpoint_simple.h5')
    if os.path.exists(weight_path):
        model.load_weights(weight_path)
    else:
        model.fit(x_train, x_val)

    start_time = time.time()
    met_dict = model.evaluate_od(x_train, x_test, y_test, 'ztf-real-bog-v1',
                                 'real', x_val)
    print("Time model.evaluate_od %s" % utils.timer(start_time, time.time()),
          flush=True)

    print('\nroc_auc')
    for key in met_dict.keys():
        print(key, met_dict[key]['roc_auc'])
    print('\nacc_at_percentil')
    for key in met_dict.keys():
        print(key, met_dict[key]['acc_at_percentil'])
    print('\nmax_accuracy')
    for key in met_dict.keys():
        print(key, met_dict[key]['max_accuracy'])

    model.save_weights(weight_path)
        #   N_RUNS),
        # (
        #   hits_outlier_dataset, kernel_transformer, 'hits', 'real',
        #   N_RUNS),
        (hits_outlier_dataset, kernel_plus_transformer, 'hits', 'real', N_RUNS
         ),
        # (
        #   ztf_outlier_dataset_63, trans_transformer, 'ztf-real-bog-v1-63', 'real',
        #   N_RUNS),
        # (
        #   ztf_outlier_dataset_63, kernel_transformer, 'ztf-real-bog-v1-63',
        #   'real',
        #   N_RUNS),
        # (
        #   ztf_outlier_dataset_63, transformer, 'ztf-real-bog-v1-63', 'real',
        #   N_RUNS),
        # (
        #   ztf_outlier_dataset_63, kernel_plus_transformer, 'ztf-real-bog-v1-63',
        #   'real',
        #   N_RUNS),
    ]
    start_time = time.time()
    for data_loader, transformer, dataset_name, class_name, run_i in experiments_list:
        run_experiments(data_loader, transformer, dataset_name, class_name,
                        run_i)
    print("Time elapsed to train everything: " +
          utils.timer(start_time, time.time()))

    # metrics_to_create_table = {}
    # create_auc_table()