Exemplo n.º 1
0
 def __init__(self):
     super(SimplerCNN, self).__init__()
     self.dropout2d_input = nn.Dropout2d(rate=0.3)
     self.conv1 = nn.Conv2d(in_channels=3,
                            out_channels=15,
                            kernel_size=3,
                            stride=3,
                            padding=2)
     self.relu1 = nn.LeakyRelu()
     self.conv2 = nn.Conv2d(in_channels=15,
                            out_channels=30,
                            kernel_size=3,
                            stride=3,
                            padding=3)
     self.relu2 = nn.LeakyRelu()
     self.dropout2d_conv1 = nn.Dropout2d(rate=0.5)
     self.conv3 = nn.Conv2d(in_channels=30, out_channels=40, kernel_size=4)
     self.relu3 = nn.LeakyRelu()
     self.flatten = nn.Flatten()
     self.dropout2d_conv2 = nn.Dropout2d(rate=0.2)
     self.linear = nn.Linear(in_dimension=360, out_dimension=180)
     self.relu4 = nn.LeakyRelu()
     self.bn1 = nn.BatchNorm()
     self.dropout3 = nn.Dropout(rate=0.3)
     self.linear2 = nn.Linear(in_dimension=180, out_dimension=10)
     self.bn2 = nn.BatchNorm()
     self.softmax = nn.Softmax()
     self.set_forward()
Exemplo n.º 2
0
def define_model(vocab_size, max_length):
    inputs1=m.Input(shape=(4096,))
    fe1=m.Dropout(0.5)(inputs1)
    fe2=m.Dense(256, activation='relu')(fe1)
    inputs2=m.Input(shape=(max_length,))
    se1=m.Embedding(vocab_size, 256, mask_zero=True)(inputs2)
    se2=m.Dropout(0.5)(se1)
    se3=m.LSTM(256)(se2)
    decoder1=m.add([fe2, se3])
    decoder2=m.Dense(256, activation='relu')(decoder1)
    outputs=m.Dense(vocab_size, activation='softmax')(decoder2)
    model=m.Model(inputs=[inputs1, inputs2], outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    model.summary()
    m.plot_model(model, to_file='model.png', show_shapes=True)
    return model
Exemplo n.º 3
0
 def __init__(self):
     super(NN, self).__init__()
     self.linear1 = nn.Linear(in_dimension=3072, out_dimension=256)
     self.relu1 = nn.LeakyRelu()
     self.dropout1 = nn.Dropout(rate=0.3)
     self.linear2 = nn.Linear(in_dimension=256, out_dimension=10)
     self.softmax = nn.Softmax()
     self.set_forward()
Exemplo n.º 4
0
    def __init__(self, layer_dims, index, position, noise_std, arglist):
        super(GRUED, self).__init__()
        # this module will hold the variables it needs to in a dictionary
        # it will also have a set of functions
        self.index = index
        self.layer_dims = layer_dims
        self.position = position
        self.noise_std = noise_std

        self.use_bn = True

        # encoding modules
        if self.position is 'first':
            en_indim = self.layer_dims[self.index]
            en_outdim = self.layer_dims[self.index]
        else:
            en_indim = layer_dims[self.index-1]
            en_outdim = layer_dims[self.index]
            # self.en_conv = nn.Conv2d(en_indim, en_outdim, bias=False, **arglist[self.index-1])
            self.en_gru = ConvGRU(en_indim, en_outdim)
        self.en_bn_clean = nn.BatchNorm2d(en_outdim, affine=False)
        self.en_bn_noisy = nn.BatchNorm2d(en_outdim, affine=False)
        self.en_gamma = nn.Parameter(torch.rand(en_outdim, 1, 1))
        self.en_beta = nn.Parameter(torch.rand(en_outdim, 1, 1))
        self.en_nonlin = nn.Tanh()

        # decoding modules
        if self.position is 'last':
            de_indim = self.layer_dims[self.index]
            de_outdim = self.layer_dims[self.index]
        else:
            de_indim = self.layer_dims[self.index+1]
            de_outdim = self.layer_dims[self.index]
            self.de_conv = nn.ConvTranspose2d(de_indim, de_outdim, bias=False, **arglist[self.index])
        self.de_bn = nn.BatchNorm2d(de_outdim, affine=False)
        self.de_gamma = nn.Parameter(torch.rand(de_outdim, 1, 1))
        self.de_beta = nn.Parameter(torch.rand(de_outdim, 1, 1))
        self.ver_dropout = modules.Dropout(0.5)
        self.lat_dropout = modules.Dropout(0.5)
        self.parsig1 = modules.ParamSigmoid()
        self.parsig2 = modules.ParamSigmoid()