Exemplo n.º 1
0
def define_model(is_resnet, is_densenet, is_senet):
    if is_resnet:
        original_model = resnet.resnet50(pretrained = True)
        Encoder = modules.E_resnet(original_model) 
        model = net.model(Encoder, num_features=2048, block_channel = [256, 512, 1024, 2048])
    if is_densenet:
        original_model = densenet.densenet161(pretrained=True)
        Encoder = modules.E_densenet(original_model)
        model = net.model(Encoder, num_features=2208, block_channel = [192, 384, 1056, 2208])
    if is_senet:
        original_model = senet.senet154(pretrained='imagenet')
        Encoder = modules.E_senet(original_model)
        model = net.model(Encoder, num_features=2048, block_channel = [256, 512, 1024, 2048])

    return model
def main():
    Encoder = modules.E_resnet(resnet.resnet50(pretrained=True))
    N = net.model(Encoder,
                  num_features=2048,
                  block_channel=[256, 512, 1024, 2048])
    N = torch.nn.DataParallel(N).cuda()
    N.load_state_dict(torch.load('./models/N'))

    N_adv = copy.deepcopy(N)
    N_adv.load_state_dict(torch.load('./models/N_adv'))

    cudnn.benchmark = True

    test_loader = loaddata.getTestingData(8)

    #test for N_adv(x*)
    test_N_adv(test_loader, N, N_adv, epsilon=0.05, iteration=10)
    test_N_adv(test_loader, N, N_adv, epsilon=0.1, iteration=10)
    test_N_adv(test_loader, N, N_adv, epsilon=0.15, iteration=10)
    test_N_adv(test_loader, N, N_adv, epsilon=0.2, iteration=10)
Exemplo n.º 3
0
def define_model(target):
    model = None
    if target is 'resnet':
        original_model = resnet.resnet50(pretrained=True)
        encoder = modules.E_resnet(original_model)
        model = net.model(encoder,
                          num_features=2048,
                          block_channel=[256, 512, 1024, 2048])
    elif target is 'densenet':
        original_model = densenet.densenet161(pretrained=True)
        encoder = modules.E_densenet(original_model)
        model = net.model(encoder,
                          num_features=2208,
                          block_channel=[192, 384, 1056, 2208])
    elif target is 'senet':
        original_model = senet.senet154(pretrained='imagenet')
        encoder = modules.E_senet(original_model)
        model = net.model(encoder,
                          num_features=2048,
                          block_channel=[256, 512, 1024, 2048])
    return model
Exemplo n.º 4
0
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional
from utils import *
from options.testopt import _get_test_opt
import nyudv2_dataloader
from resnet import resnet18
import modules
import net

args = _get_test_opt
TestImgLoader = nyudv2_dataloader.getTestingData_NYUDV2(
    args.batch_size, args.testlist_path, args.root_path)

Encoder = modules.E_resnet(resnet18)

if args.backbone in ['resnet50']:
    model = net.model(Encoder,
                      num_features=2048,
                      block_channel=[256, 512, 1024, 2048],
                      refinenet=args.refinenet)
elif args.backbone in ['resnet18', 'resnet34']:
    model = net.model(Encoder,
                      num_features=512,
                      block_channel=[64, 128, 256, 512],
                      refinenet=args.refinenet)

model = nn.DataParallel(model).cuda()

if args.loadckpt is not None and args.loadckpt.endswith('.pth.tar'):