Exemplo n.º 1
0
class Model():
    def __init__(self, args):
        self.args = args

        self.pretrained = False
        self.epoch = 0
        self.G = Generator()
        self.D = Discriminator()
        self.g_optimizer = optim.Adam(self.G.parameters(), lr=1E-4)
        self.d_optimizer = optim.Adam(self.D.parameters(), lr=1E-4)
        self.g_scheduler = optim.lr_scheduler.StepLR(self.g_optimizer,
                                                     step_size=40)
        self.d_scheduler = optim.lr_scheduler.StepLR(self.d_optimizer,
                                                     step_size=40)
        self.train_losses = []
        self.val_losses = []

        if args.load_model:
            self._load_state(args.load_model)

        # extract all layers prior to the last softmax of VGG-19
        vgg19_layers = list(models.vgg19(pretrained=True).features)[:36]
        self.vgg19 = nn.Sequential(*vgg19_layers).eval()
        for param in self.vgg19.parameters():
            param.requires_grad = False

        self.mse_loss = torch.nn.MSELoss()
        self.bce_loss = torch.nn.BCELoss()

    def train(self, train_dataloader, val_dataloader=None):
        self.D.to(device)
        self.G.to(device)
        self.vgg19.to(device)
        """ Pretrain Generator """
        if not self.pretrained:
            log_message("Starting pretraining")
            self._pretrain(train_dataloader)
            self._save_state()

            if val_dataloader:
                val_g_loss, _ = self.evaluate(val_dataloader)
                log_message("Pretrain G loss: {:.4f}".format(val_g_loss))
        """ Real Training """
        log_message("Starting training")
        while self.epoch < self.args.epochs:
            # Train one epoch
            self.D.train()
            self.G.train()

            g_loss, d_loss = self._run_epoch(train_dataloader, train=True)

            self.train_losses.append([g_loss, d_loss])
            self.g_scheduler.step()
            self.d_scheduler.step()
            self.epoch += 1
            log_message("Epoch: {}/{}".format(self.epoch, self.args.epochs))

            # Print evaluation
            train_string = "Train G loss: {:.4f} | Train D loss: {:.4f}".format(
                g_loss, d_loss)
            if self.epoch % self.args.eval_epochs == 0:
                if val_dataloader:
                    val_g_loss, val_d_loss = self.evaluate(val_dataloader)
                    self.val_losses.append([val_g_loss, val_d_loss])
                    train_string += " | Val G loss: {:.4f} | Val D loss: {:.4f}".format(
                        val_g_loss, val_d_loss)
            log_message(train_string)

            # Save the model
            if self.epoch % self.args.save_epochs == 0:
                self._save_state()

        log_message("Finished training")
        self._save_state()

    def evaluate(self, dataloader):
        self.D.eval()
        self.G.eval()

        with torch.no_grad():
            return self._run_epoch(dataloader, train=False)

    def generate(self, dataloader):
        def to_image(tensor):
            array = tensor.data.cpu().numpy()
            array = array.transpose((1, 2, 0))
            array = np.clip(255.0 * (array + 1) / 2, 0, 255)
            array = np.uint8(array)
            return Image.fromarray(array)

        self.D.eval()
        self.G.eval()

        if not os.path.exists(self.args.generate_dir):
            os.mkdir(self.args.generate_dir)

        with torch.no_grad():
            for batch in dataloader:
                low_res = batch['low_res'].to(device)
                hi_res = batch['high_res']
                generated = self.G(low_res)

                for i in range(len(generated)):
                    naive = np.clip(
                        255.0 * low_res[i].data.cpu().numpy().transpose(
                            (1, 2, 0)), 0, 255)
                    naive = Image.fromarray(np.uint8(naive))
                    naive = naive.resize((96, 96), Image.BICUBIC)

                    fake_im = to_image(generated[i])
                    real_im = to_image(hi_res[i])

                    naive.save(
                        os.path.join(self.args.generate_dir,
                                     "{}_naive.png".format(i)))
                    fake_im.save(
                        os.path.join(self.args.generate_dir,
                                     "{}_fake.png".format(i)))
                    real_im.save(
                        os.path.join(self.args.generate_dir,
                                     "{}_real.png".format(i)))

                    if i > 10:
                        return

    def _load_state(self, fname):
        if torch.cuda.is_available():
            map_location = lambda storage, loc: storage.cuda()
        else:
            map_location = 'cpu'
        state = torch.load(fname, map_location=map_location)

        self.pretrained = state["pretrained"]
        self.epoch = state["epoch"]
        self.train_losses = state["train_losses"]
        self.val_losses = state["val_losses"]
        self.G.load_state_dict(state["G"])
        self.D.load_state_dict(state["D"])
        self.g_optimizer.load_state_dict(state["g_optimizer"])
        self.d_optimizer.load_state_dict(state["d_optimizer"])
        self.g_scheduler.load_state_dict(state["g_scheduler"])
        self.d_scheduler.load_state_dict(state["d_scheduler"])

        for state in self.d_optimizer.state.values():
            for k, v in state.items():
                if torch.is_tensor(v):
                    state[k] = v.to(device)
        for state in self.g_optimizer.state.values():
            for k, v in state.items():
                if torch.is_tensor(v):
                    state[k] = v.to(device)

    def _save_state(self):
        if not os.path.exists(self.args.save_dir):
            os.mkdir(self.args.save_dir)

        fname = "%s/save_%d.pkl" % (self.args.save_dir, self.epoch)
        state = {
            "pretrained": self.pretrained,
            "epoch": self.epoch,
            "G": self.G.state_dict(),
            "D": self.D.state_dict(),
            "g_optimizer": self.g_optimizer.state_dict(),
            "d_optimizer": self.d_optimizer.state_dict(),
            "g_scheduler": self.g_scheduler.state_dict(),
            "d_scheduler": self.d_scheduler.state_dict(),
            "train_losses": self.train_losses,
            "val_losses": self.val_losses
        }
        torch.save(state, fname)

    def _pretrain(self, dataloader):
        self.G.train()
        for i in range(self.args.pretrain_epochs):
            log_message("Pretrain Epoch: {}/{}".format(
                i, self.args.pretrain_epochs))
            for batch in dataloader:
                low_res = batch['low_res'].to(device)
                high_res = batch['high_res'].to(device)

                self.g_optimizer.zero_grad()

                generated = self.G(low_res)

                # Optimize pixel loss
                g_loss = self.mse_loss(generated, high_res)
                g_loss.backward()
                self.g_optimizer.step()

        self.pretrained = True

    def _run_epoch(self, dataloader, train):
        g_losses, d_losses = [], []

        for batch in dataloader:
            low_res = batch['low_res'].to(device)
            high_res = batch['high_res'].to(device)

            batch_size = high_res.size(0)
            real = torch.ones((batch_size, 1), requires_grad=False).to(device)
            fake = torch.zeros((batch_size, 1), requires_grad=False).to(device)
            """ Discriminator """
            generated = self.G(low_res)
            self.d_optimizer.zero_grad()

            real_loss = self.bce_loss(self.D(high_res), real)
            fake_loss = self.bce_loss(self.D(generated), fake)
            d_loss = real_loss + fake_loss
            d_losses.append(d_loss.item())

            if train:
                d_loss.backward()
                self.d_optimizer.step()
            """ Generator """
            generated = self.G(low_res)
            self.g_optimizer.zero_grad()

            # take a [B, C, W, H] batch of [-1, 1] images, normalize, then run through vgg19
            def vgg_features(image):
                mean = torch.tensor(
                    [0.485, 0.456,
                     0.406]).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(device)
                std = torch.tensor(
                    [0.229, 0.224,
                     0.225]).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(device)
                image = (image + 1) / 2
                image = (image - mean) / std
                return self.vgg19(image)

            pixel_loss = self.mse_loss(high_res, generated)
            content_loss = self.mse_loss(vgg_features(high_res),
                                         vgg_features(generated))
            adversarial_loss = self.bce_loss(self.D(generated), real)
            g_loss = pixel_loss + 0.006 * content_loss + 1E-3 * adversarial_loss
            g_losses.append(g_loss.item())

            if train:
                g_loss.backward()
                self.g_optimizer.step()

        return np.mean(g_losses), np.mean(d_losses)
Exemplo n.º 2
0
class Solver(object):
    def __init__(self, config, data_loader):
        self.generator = None
        self.discriminator = None
        self.g_optimizer = None
        self.d_optimizer = None
        self.g_conv_dim = config.g_conv_dim
        self.d_conv_dim = config.d_conv_dim
        self.z_dim = config.z_dim
        self.beta1 = config.beta1
        self.beta2 = config.beta2
        self.image_size = config.image_size
        self.data_loader = data_loader
        self.num_epochs = config.num_epochs
        self.batch_size = config.batch_size
        self.sample_size = config.sample_size
        self.lr = config.lr
        self.log_step = config.log_step
        self.sample_step = config.sample_step
        self.sample_path = config.sample_path
        self.model_path = config.model_path
        self.epoch = config.epoch
        self.build_model()

        self.plotter = Plotter()
        
    def build_model(self):
        """Build generator and discriminator."""
        self.generator = Generator(z_dim=self.z_dim)
        print(count_parameters(self.generator))
        self.discriminator = Discriminator()
        print(count_parameters(self.discriminator))
        self.g_optimizer = optim.Adam(self.generator.parameters(),
                                      self.lr, (self.beta1, self.beta2))
        self.d_optimizer = optim.Adam(self.discriminator.parameters(),
                                      self.lr*1, (self.beta1, self.beta2))

        if self.epoch:
            g_path = os.path.join(self.model_path, 'generator-%d.pkl' % self.epoch)
            d_path = os.path.join(self.model_path, 'discriminator-%d.pkl' % self.epoch)
            g_optim_path = os.path.join(self.model_path, 'gen-optim-%d.pkl' % self.epoch)
            d_optim_path = os.path.join(self.model_path, 'dis-optim-%d.pkl' % self.epoch)
            self.generator.load_state_dict(torch.load(g_path))
            self.discriminator.load_state_dict(torch.load(d_path))
            self.g_optimizer.load_state_dict(torch.load(g_optim_path))
            self.d_optimizer.load_state_dict(torch.load(d_optim_path))

        if torch.cuda.is_available():
            self.generator.cuda()
            self.discriminator.cuda()


        
    def to_variable(self, x):
        """Convert tensor to variable."""
        if torch.cuda.is_available():
            x = x.cuda()
        return Variable(x)
    
    def to_data(self, x):
        """Convert variable to tensor."""
        if torch.cuda.is_available():
            x = x.cpu()
        return x.data
    
    def reset_grad(self):
        """Zero the gradient buffers."""
        self.discriminator.zero_grad()
        self.generator.zero_grad()
    
    def denorm(self, x):
        """Convert range (-1, 1) to (0, 1)"""
        out = (x + 1) / 2
        return out.clamp(0, 1)

    def train(self):
        """Train generator and discriminator."""
        fixed_noise = self.to_variable(torch.randn(self.batch_size, self.z_dim))
        total_step = len(self.data_loader)
        for epoch in range(self.epoch, self.epoch + self.num_epochs) if self.epoch else range(self.num_epochs):
            for i, images in enumerate(self.data_loader):
                if len(images) != self.batch_size:
                    continue

                # self.plotter.draw_kernels(self.discriminator)
                for p in self.discriminator.parameters():
                    p.requires_grad = True
                #===================== Train D =====================#
                images = self.to_variable(images)
                images.retain_grad()
                batch_size = images.size(0)
                noise = self.to_variable(torch.randn(batch_size, self.z_dim))
                
                # Train D to recognize real images as real.
                outputs = self.discriminator(images)
                real_loss = torch.mean((outputs - 1) ** 2)      # L2 loss instead of Binary cross entropy loss (this is optional for stable training)
                # real_loss = torch.mean(outputs - 1)
                # Train D to recognize fake images as fake.
                fake_images = self.generator(noise)
                fake_images.retain_grad()
                outputs = self.discriminator(fake_images)
                fake_loss = torch.mean(outputs ** 2)
                # fake_loss = torch.mean(outputs)

                # gradient penalty
                gp_loss = calc_gradient_penalty(self.discriminator, images, fake_images)

                # Backprop + optimize
                d_loss = fake_loss + real_loss + gp_loss
                self.reset_grad()
                d_loss.backward()
                self.d_optimizer.step()
                if i % 10 == 0:
                    self.plotter.draw_activations(fake_images.grad[0], original=fake_images[0])

                g_losses = []
                for p in self.discriminator.parameters():
                    p.requires_grad = False
                #===================== Train G =====================#
                for g_batch in range(5):
                    noise = self.to_variable(torch.randn(batch_size, self.z_dim))

                    # Train G so that D recognizes G(z) as real.
                    fake_images = self.generator(noise)
                    outputs = self.discriminator(fake_images)
                    g_loss = torch.mean((outputs - 1) ** 2)
                    # g_loss = -torch.mean(outputs)
                    # Backprop + optimize
                    self.reset_grad()
                    g_loss.backward()
                    # if g_loss.item() < 0.5 * d_loss.item():
                    #     break
                    self.g_optimizer.step()

                    g_losses.append("%.3f"%g_loss.clone().item())
                # print the log info
                if (i+1) % self.log_step == 0:
                    print('Epoch [%d/%d], Step[%d/%d], d_real_loss: %.4f, ' 
                          'd_fake_loss: %.4f, gp_loss: %s, g_loss: %s'
                          %(epoch+1, self.num_epochs, i+1, total_step, 
                            real_loss.item(), fake_loss.item(), gp_loss.item(), ", ".join(g_losses)))

                # save the sampled images
                # print((i+1)%self.sample_step)
                if (i) % self.sample_step == 0:
                    print("saving samples")
                    fake_images = self.generator(fixed_noise)
                    if not os.path.exists(self.sample_path):
                        os.makedirs(self.sample_path)
                    torchvision.utils.save_image(self.denorm(fake_images.data), 
                        os.path.join(self.sample_path,
                                     'fake_samples-%d-%d.png' %(epoch+1, i+1)))
            
            # save the model parameters for each epoch
            if epoch % 5 == 0:
                if not os.path.exists(self.model_path):
                    os.mkdir(self.model_path)
                g_path = os.path.join(self.model_path, 'generator-%d.pkl' %(epoch+1))
                d_path = os.path.join(self.model_path, 'discriminator-%d.pkl' %(epoch+1))
                g_optim_path = os.path.join(self.model_path, 'gen-optim-%d.pkl' % (epoch + 1))
                d_optim_path = os.path.join(self.model_path, 'dis-optim-%d.pkl' % (epoch + 1))
                torch.save(self.generator.state_dict(), g_path)
                torch.save(self.discriminator.state_dict(), d_path)
                torch.save(self.g_optimizer.state_dict(), g_optim_path)
                torch.save(self.d_optimizer.state_dict(), d_optim_path)
            
    def sample(self):
        
        # Load trained parameters 
        g_path = os.path.join(self.model_path, 'generator-%d.pkl' % self.num_epochs)
        d_path = os.path.join(self.model_path, 'discriminator-%d.pkl' % self.num_epochs)
        self.generator.load_state_dict(torch.load(g_path))
        self.discriminator.load_state_dict(torch.load(d_path))
        self.generator.eval()
        self.discriminator.eval()
        
        # Sample the images
        noise = self.to_variable(torch.randn(self.sample_size, self.z_dim))
        fake_images = self.generator(noise)
        sample_path = os.path.join(self.sample_path, 'fake_samples-final.png')
        torchvision.utils.save_image(self.denorm(fake_images.data), sample_path, nrow=12)
        
        print("Saved sampled images to '%s'" %sample_path)
Exemplo n.º 3
0
class Solver(object):
    def __init__(self, config, dataloader):
        self.dataloader = dataloader
        self.data_size = config.data_size
        # self.iters = config.iters
        self.loss_type = config.loss_type
        self.G_lr = config.G_lr
        self.D_lr = config.D_lr
        self.beta1 = config.momentum
        self.batch_size = config.batch_size
        self.max_epoch = config.max_epoch
        self.z_dim = config.z_dim
        self.lr_update_step = config.lr_update_step
        self.lr_decay_after = config.lr_decay_after
        self.lr_decay = config.lr_decay
        # path
        self.sample_path = os.path.join(config.main_path, 'samples')
        self.ckpt_path = os.path.join(config.main_path, 'checkpoints')
        # misc
        self.log_step = config.log_step
        self.eval_step = config.eval_step
        self.save_step = config.save_step

        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        self.build_model()

    def build_model(self):
        self.G = Generator()
        self.D = Discriminator()

        self.G_optim = optim.Adam(self.G.parameters(), self.G_lr,
                                  (self.beta1, 0.999))
        self.D_optim = optim.Adam(self.D.parameters(), self.D_lr,
                                  (self.beta1, 0.999))

        if self.loss_type == 'BCEwL':
            self.criterion = nn.BCEWithLogitsLoss()
        elif self.loss_type == 'WGAN':
            pass
        elif self.loss_type == 'WGAN+':
            pass

        self.fixed_sample = None
        self.fixed_noise = None

        # self.true = torch.ones([self.batch_size, 1, 1, 1], requires_grad=False).to(self.device)
        # self.false = torch.zeros([self.batch_size, 1, 1, 1], requires_grad=False).to(self.device)

        # Change to GPU mode
        print('Change CPU mode to GPU mode...')
        self.G.to(self.device)
        self.D.to(self.device)
        print('Creating models are success...')

    def restore_model(self, resume_iters):
        print('Load the trained models from step {}...'.format(resume_iters))
        G_path = os.path.join(self.ckpt_path, '{}-G.ckpt'.format(resume_iters))
        D_path = os.path.join(self.ckpt_path, '{}-D.ckpt'.format(resume_iters))
        self.G.load_state_dict(torch.load(G_path))
        self.D.load_state_dict(torch.load(D_path))

    def train(self):
        iters = self.max_epoch * len(self.dataloader)
        data_iter = iter(self.dataloader)
        self.fixed_sample = next(data_iter)
        self.fixed_noise = torch.randn(self.batch_size,
                                       self.z_dim).to(self.device)
        num_data = 0
        start_time = time.time()
        print('Start training...')
        for i in range(iters):
            # try:
            #     sample = next(data_iter)
            # except:
            #     print('error occur')
            #     data_iter = iter(self.dataloader)
            #     sample = next(data_iter)
            sample = next(data_iter)
            if i % len(self.dataloader) == 0:
                data_iter = iter(self.dataloader)
            # Load data.
            right_embd = sample['right_embd'].to(self.device)
            wrong_embd = sample['wrong_embd'].to(self.device)
            z_noise = torch.randn(right_embd.size(0),
                                  self.z_dim).to(self.device)
            real_img = sample['real_img'].to(self.device)
            fake_img = self.G(right_embd, z_noise)
            # print('right_embd size: {}'.format(right_embd.size()))
            # print('wrong_embd size: {}'.format(wrong_embd.size()))
            # print('real_img size: {}'.format(real_img.size()))
            num_data += right_embd.size(0)
            T = torch.ones([right_embd.size(0), 1, 1, 1],
                           requires_grad=False).to(self.device)
            F = torch.zeros([right_embd.size(0), 1, 1, 1],
                            requires_grad=False).to(self.device)
            ## Train Discriminator.
            sr = self.D(real_img, right_embd)  # {real image, right text}
            rr_loss = self.criterion(sr, T)
            sw = self.D(real_img, wrong_embd)  # {real image, wrong text}
            rw_loss = self.criterion(sw, F)
            sf = self.D(fake_img.detach(),
                        right_embd)  # {fake image, right text}
            fr_loss = self.criterion(sf, F)
            d_loss = rr_loss + rw_loss + fr_loss
            ## Backward and optimize for D.
            self.D_optim.zero_grad()
            d_loss.backward()
            self.D_optim.step()
            # For logs
            loss = {}
            loss['D/rr_loss'] = rr_loss.item()
            loss['D/rw_loss'] = rw_loss.item()
            loss['D/fr_loss'] = fr_loss.item()
            loss['D/d_loss'] = d_loss.item()

            ## Train Generator.
            sf = self.D(fake_img, right_embd)
            g_loss = self.criterion(sf, T)
            ## Backward and optimize for G.
            self.G_optim.zero_grad()
            g_loss.backward()
            self.G_optim.step()
            loss['G/g_loss'] = g_loss.item()

            ## Print training information.
            if (i + 1) % self.log_step == 0:
                et = time.time() - start_time
                et = str(datetime.timedelta(seconds=et))[:-7]
                logs = "Elapsed [{}], Iter [{}/{}], Epoch [{}/{}]".format(
                    et, i + 1, iters, (i + 1) / len(self.dataloader),
                    self.max_epoch)
                logs += ", Dataset [{}/{}]".format(num_data % self.data_size,
                                                   self.data_size)
                for tag, value in loss.items():
                    logs += ', {} [{:.4f}]'.format(tag, value)
                print(logs)
            ## Debug sample images.
            if (i + 1) % self.eval_step == 0:  #will be modified.
                with torch.no_grad():
                    image_path = os.path.join(self.sample_path,
                                              '{}.jpg'.format(i + 1))
                    fake_img = self.G(self.fixed_sample['right_embd'].to(
                        self.device), self.fixed_noise)  #size: [B, 3, 64, 64]
                    real_img = self.fixed_sample['real_img']
                    img_list = []
                    for row in range(int(self.batch_size /
                                         8)):  #print multiple of 8 samples
                        img_list += [
                            real_img[row * 8 + col] for col in range(8)
                        ]
                        img_list += [
                            fake_img[row * 8 + col].to('cpu')
                            for col in range(8)
                        ]
                    sample_name = os.path.join(self.sample_path,
                                               '{}iter.jpg'.format(i + 1))
                    save_image(make_grid(img_list), sample_name)
                print('Save generated sample results {}iter.jpg into {}...'.
                      format(i + 1, self.sample_path))
            ## Save model checkpoints.
            if (i + 1) % self.save_step == 0:
                G_path = os.path.join(self.ckpt_path,
                                      '{}-G.ckpt'.format(i + 1))
                D_path = os.path.join(self.ckpt_path,
                                      '{}-D.ckpt'.format(i + 1))
                torch.save(self.G.state_dict(), G_path)
                torch.save(self.D.state_dict(), D_path)
                print('Save model checkpoints into {}...'.format(
                    self.ckpt_path))
            ## Decay learning rates.
            if (i + 1) % self.lr_update_step == 0:
                if (i + 1) >= self.lr_decay_after:
                    self.G_lr = self.G_lr * self.lr_decay
                    self.D_lr = self.D_lr * self.lr_decay
                    for param_group in self.G_optim.param_groups:
                        param_group['lr'] = self.G_lr
                    for param_group in self.D_optim.param_groups:
                        param_group['lr'] = self.D_lr
                print('Decay learning rates, g_lr: {}, d_lr: {}...'.format(
                    self.G_lr, self.D_lr))

    def test(self):
        pass
Exemplo n.º 4
0
class Trainer(object):
    def __init__(self, data_loader, config):
        self.dataloader = data_loader
        self.imsize = config.imsize
        self.batch_size = config.batch_size
        self.g_lr = config.g_lr
        self.d_lr = config.d_lr
        self.g_dim = config.g_dim
        self.d_dim = config.d_dim
        self.beta1 = config.beta1
        self.beta2 = config.beta2
        self.lambda_gp = config.lambda_gp

        self.z_dim = config.z_dim
        self.num_iters = config.total_step
        self.num_iters_decay = config.iter_start_decay
        self.log_step = config.log_step
        self.sample_step = config.sample_step
        self.lr_update_step = config.lr_iter_decay
        self.lr_decay = config.lr_decay
        self.model_save_step = config.model_save_step
        self.resume_iters = config.resume_iter
        self.version = config.version

        self.device = torch.device('cuda:0')

        self.sample_path = os.path.join(config.sample_path, self.version)
        self.model_save_dir = os.path.join(config.model_save_path,
                                           self.version)
        self.build_model()

    def build_model(self):
        self.G = Generator(image_size=self.imsize,
                           z_dim=self.z_dim,
                           conv_dim=self.g_dim)
        self.D = Discriminator(conv_dim=self.d_dim)

        self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr,
                                            [self.beta1, self.beta2])
        self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr,
                                            [self.beta1, self.beta2])
        self.print_network(self.G, 'G')
        self.print_network(self.D, 'D')

        self.G.to(self.device)
        self.D.to(self.device)

    def reset_grad(self):
        self.g_optimizer.zero_grad()
        self.d_optimizer.zero_grad()

    def update_lr(self, g_lr, d_lr):
        for param_group in self.g_optimizer.param_groups:
            param_group['lr'] = g_lr
        for param_group in self.d_optimizer.param_groups:
            param_group['lr'] = d_lr

    def print_network(self, model, name):
        num_params = 0
        for p in model.parameters():
            num_params += p.numel()
        print(model)
        print(name)
        print("The number of parameters: {}".format(num_params))

    def restore_model(self, resume_iters):
        print(
            'Loading the trained models from step {}...'.format(resume_iters))
        G_path = os.path.join(self.model_save_dir,
                              '{}-G.ckpt'.format(resume_iters))
        D_path = os.path.join(self.model_save_dir,
                              '{}-D.ckpt'.format(resume_iters))
        self.G.load_state_dict(
            torch.load(G_path, map_location=lambda storage, loc: storage))
        self.D.load_state_dict(
            torch.load(D_path, map_location=lambda storage, loc: storage))

    def gradient_penalty(self, y, x):
        weight = torch.ones(y.size()).to(self.device)
        dydx = torch.autograd.grad(outputs=y,
                                   inputs=x,
                                   grad_outputs=weight,
                                   retain_graph=True,
                                   create_graph=True,
                                   only_inputs=True)[0]

        dydx = dydx.view(dydx.size(0), -1)
        dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
        return torch.mean((dydx_l2norm - 1)**2)

    def train(self):
        loss = {}
        vis = visdom.Visdom()

        data_iter = iter(self.dataloader)
        g_lr = self.g_lr
        d_lr = self.d_lr
        fixed_z = torch.randn(self.batch_size, self.z_dim).cuda()

        start_iters = 0
        if self.resume_iters:
            start_iters = self.resume_iters
            self.restore_model(self.resume_iters)

        print('start training')
        start_time = time.time()
        for i in range(start_iters, self.num_iters):
            try:
                x_mb, _ = next(data_iter)
            except:
                data_iter = iter(self.dataloader)
                x_mb, _ = next(data_iter)
            x_mb = x_mb.cuda()
            z = torch.randn(x_mb.size(0), self.z_dim).cuda()
            # train the discriminator
            x_fake = self.G(z)
            d_real = self.D(x_mb)
            d_fake = self.D(x_fake)
            d_loss_real = -torch.mean(d_real)
            d_loss_fake = torch.mean(d_fake)
            alpha = torch.rand(x_mb.size(0), 1, 1, 1).to(self.device)
            # interpolate between real data and fake data
            x_hat = (alpha * x_mb.data +
                     (1 - alpha) * x_fake.data).requires_grad_(True)
            out_src = self.D(x_hat)

            d_loss_gp = self.gradient_penalty(out_src, x_hat)
            d_loss = d_loss_real + d_loss_fake + self.lambda_gp * d_loss_gp

            d_loss.backward()
            self.d_optimizer.step()
            self.reset_grad()

            loss['D/loss_real'] = d_loss_real.item()
            loss['D/loss_fake'] = d_loss_fake.item()
            loss['D/loss_gp'] = d_loss_gp.item()
            # train generator
            d_fake = self.D(self.G(z))
            g_loss = -torch.mean(d_fake)

            g_loss.backward()
            self.g_optimizer.step()
            self.reset_grad()

            loss['G/loss'] = g_loss.item()
            if (i + 1) % self.log_step == 0:
                # visualize real and fake imgs
                vis.images((x_fake + 1) / 2, win='fake_imgs')
                vis.images((x_mb + 1) / 2, win='real_imgs')
                # print and visualize losses
                et = time.time() - start_time
                et = str(datetime.timedelta(seconds=et))[:-7]
                log = "Elapsed [{}], Iteration [{}/{}]".format(
                    et, i + 1, self.num_iters)
                for tag, value in loss.items():
                    log += ", {}: {:.4f}".format(tag, value)
                opts = dict(title='Losses',
                            width=13,
                            height=10,
                            legend=list(loss.keys()))
                vis.line(Y=[list(loss.values())], X=[np.ones(len(loss))*(i+1)], win='Losses', \
                         update='append', opts=opts)
                print(log)

            if (i + 1) % self.lr_update_step == 0 and (
                    i + 1) > self.num_iters_decay:
                g_lr = self.g_lr * self.lr_decay
                d_lr = self.d_lr * self.lr_decay
                self.update_lr(g_lr, d_lr)
                print('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(
                    g_lr, d_lr))

            # Sample images
            if (i + 1) % self.sample_step == 0:
                fake_images = self.G(fixed_z)
                save_image(
                    denorm(fake_images.data),
                    os.path.join(self.sample_path,
                                 '{}_fake.png'.format(i + 1)))

            if (i + 1) % self.model_save_step == 0:
                G_path = os.path.join(self.model_save_dir,
                                      '{}-G.ckpt'.format(i + 1))
                D_path = os.path.join(self.model_save_dir,
                                      '{}-D.ckpt'.format(i + 1))
                torch.save(self.G.state_dict(), G_path)
                torch.save(self.D.state_dict(), D_path)
                print('Saved model checkpoints into {}...'.format(
                    self.model_save_dir))
Exemplo n.º 5
0
def train(rank: int, cfg: DictConfig):
    print(OmegaConf.to_yaml(cfg))

    if cfg.train.n_gpu > 1:
        init_process_group(backend=cfg.train.dist_config['dist_backend'],
                           init_method=cfg.train.dist_config['dist_url'],
                           world_size=cfg.train.dist_config['world_size'] *
                           cfg.train.n_gpu,
                           rank=rank)

    device = torch.device(
        'cuda:{:d}'.format(rank) if torch.cuda.is_available() else 'cpu')

    generator = Generator(sum(cfg.model.feature_dims), *cfg.model.cond_dims,
                          **cfg.model.generator).to(device)
    discriminator = Discriminator(**cfg.model.discriminator).to(device)

    if rank == 0:
        print(generator)
        os.makedirs(cfg.train.ckpt_dir, exist_ok=True)
        print("checkpoints directory : ", cfg.train.ckpt_dir)

    if os.path.isdir(cfg.train.ckpt_dir):
        cp_g = scan_checkpoint(cfg.train.ckpt_dir, 'g_')
        cp_do = scan_checkpoint(cfg.train.ckpt_dir, 'd_')

    steps = 1
    if cp_g is None or cp_do is None:
        state_dict_do = None
        last_epoch = -1
    else:
        state_dict_g = load_checkpoint(cp_g, device)
        state_dict_do = load_checkpoint(cp_do, device)
        generator.load_state_dict(state_dict_g['generator'])
        discriminator.load_state_dict(state_dict_do['discriminator'])
        steps = state_dict_do['steps'] + 1
        last_epoch = state_dict_do['epoch']

    if cfg.train.n_gpu > 1:
        generator = DistributedDataParallel(generator,
                                            device_ids=[rank]).to(device)
        discriminator = DistributedDataParallel(discriminator,
                                                device_ids=[rank]).to(device)

    optim_g = RAdam(generator.parameters(), cfg.opt.lr, betas=cfg.opt.betas)
    optim_d = RAdam(discriminator.parameters(),
                    cfg.opt.lr,
                    betas=cfg.opt.betas)

    if state_dict_do is not None:
        optim_g.load_state_dict(state_dict_do['optim_g'])
        optim_d.load_state_dict(state_dict_do['optim_d'])

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
        optim_g, gamma=cfg.opt.lr_decay, last_epoch=last_epoch)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
        optim_d, gamma=cfg.opt.lr_decay, last_epoch=last_epoch)

    train_filelist = load_dataset_filelist(cfg.dataset.train_list)
    trainset = FeatureDataset(cfg.dataset, train_filelist, cfg.data)
    train_sampler = DistributedSampler(
        trainset) if cfg.train.n_gpu > 1 else None
    train_loader = DataLoader(trainset,
                              batch_size=cfg.train.batch_size,
                              num_workers=cfg.train.num_workers,
                              shuffle=True,
                              sampler=train_sampler,
                              pin_memory=True,
                              drop_last=True)

    if rank == 0:
        val_filelist = load_dataset_filelist(cfg.dataset.test_list)
        valset = FeatureDataset(cfg.dataset,
                                val_filelist,
                                cfg.data,
                                segmented=False)
        val_loader = DataLoader(valset,
                                batch_size=1,
                                num_workers=cfg.train.num_workers,
                                shuffle=False,
                                sampler=train_sampler,
                                pin_memory=True)

        sw = SummaryWriter(os.path.join(cfg.train.ckpt_dir, 'logs'))

    generator.train()
    discriminator.train()
    for epoch in range(max(0, last_epoch), cfg.train.epochs):
        if rank == 0:
            start = time.time()
            print("Epoch: {}".format(epoch + 1))

        if cfg.train.n_gpu > 1:
            train_sampler.set_epoch(epoch)

        for y, x_noised_features, x_noised_cond in train_loader:
            if rank == 0:
                start_b = time.time()

            y = y.to(device, non_blocking=True)
            x_noised_features = x_noised_features.transpose(1, 2).to(
                device, non_blocking=True)
            x_noised_cond = x_noised_cond.to(device, non_blocking=True)
            z1 = torch.randn(cfg.train.batch_size,
                             cfg.model.cond_dims[1],
                             device=device)
            z2 = torch.randn(cfg.train.batch_size,
                             cfg.model.cond_dims[1],
                             device=device)

            y_hat1 = generator(x_noised_features, x_noised_cond, z=z1)
            y_hat2 = generator(x_noised_features, x_noised_cond, z=z2)

            # Discriminator
            real_scores, fake_scores = discriminator(y), discriminator(
                y_hat1.detach())
            d_loss = discriminator_loss(real_scores, fake_scores)

            optim_d.zero_grad()
            d_loss.backward(retain_graph=True)
            optim_d.step()

            # Generator
            g_stft_loss = criterion(y, y_hat1) + criterion(
                y, y_hat2) - criterion(y_hat1, y_hat2)
            g_adv_loss = adversarial_loss(fake_scores)
            g_loss = g_adv_loss + g_stft_loss

            optim_g.zero_grad()
            g_loss.backward()
            optim_g.step()

            if rank == 0:
                # STDOUT logging
                if steps % cfg.train.stdout_interval == 0:
                    with torch.no_grad():
                        print(
                            'Steps : {:d}, Gen Loss Total : {:4.3f}, STFT Error : {:4.3f}, s/b : {:4.3f}'
                            .format(steps, g_loss, g_stft_loss,
                                    time.time() - start_b))

                # checkpointing
                if steps % cfg.train.checkpoint_interval == 0:
                    ckpt_dir = "{}/g_{:08d}".format(cfg.train.ckpt_dir, steps)
                    save_checkpoint(
                        ckpt_dir, {
                            'generator':
                            (generator.module if cfg.train.n_gpu > 1 else
                             generator).state_dict()
                        })
                    ckpt_dir = "{}/do_{:08d}".format(cfg.train.ckpt_dir, steps)
                    save_checkpoint(
                        ckpt_dir, {
                            'discriminator':
                            (discriminator.module if cfg.train.n_gpu > 1 else
                             discriminator).state_dict(),
                            'optim_g':
                            optim_g.state_dict(),
                            'optim_d':
                            optim_d.state_dict(),
                            'steps':
                            steps,
                            'epoch':
                            epoch
                        })

                # Tensorboard summary logging
                if steps % cfg.train.summary_interval == 0:
                    sw.add_scalar("training/gen_loss_total", g_loss, steps)
                    sw.add_scalar("training/gen_stft_error", g_stft_loss,
                                  steps)

                # Validation
                if steps % cfg.train.validation_interval == 0:
                    generator.eval()
                    torch.cuda.empty_cache()
                    val_err_tot = 0
                    with torch.no_grad():
                        for j, (y, x_noised_features,
                                x_noised_cond) in enumerate(val_loader):
                            y_hat = generator(
                                x_noised_features.transpose(1, 2).to(device),
                                x_noised_cond.to(device))
                            val_err_tot += criterion(y, y_hat).item()

                            if j <= 4:
                                # sw.add_audio('noised/y_noised_{}'.format(j), y_noised[0], steps, cfg.data.target_sample_rate)
                                sw.add_audio('generated/y_hat_{}'.format(j),
                                             y_hat[0], steps,
                                             cfg.data.sample_rate)
                                sw.add_audio('gt/y_{}'.format(j), y[0], steps,
                                             cfg.data.sample_rate)

                        val_err = val_err_tot / (j + 1)
                        sw.add_scalar("validation/stft_error", val_err, steps)

                    generator.train()

            steps += 1

        scheduler_g.step()
        scheduler_d.step()

        if rank == 0:
            print('Time taken for epoch {} is {} sec\n'.format(
                epoch + 1, int(time.time() - start)))