Exemplo n.º 1
0
def get_next_row_dict(filename):

    with open(filename, "r") as f:
        reader = csv.reader(f)
        count = 0
        colnames = list()
        for file_row in reader:
            if count == 0:
                colnames = file_row
            else:
                values = list(
                    Handler.string_to_type(elem.strip()) for elem in file_row)

                if len(values) == len(colnames):
                    row_dict = dict(zip(colnames, values))
                    yield row_dict
            count += 1
Exemplo n.º 2
0
    plot_file = in_dir + "RF{}_{}_{}_{}_cutoff_{}_deg{}_{}.png".format(ylabel, xlabel, zlabel, str(bin_limit),
                                                                  str(int(z_thresh*scaledown_treecover)), deg,
                                                                  datetime.now().isoformat().split('.')[0]
                                                                  .replace('-', '').replace(':', ''))

    plot_file2 = in_dir + "RF{}_{}_{}_{}_cutoff_{}_deg{}_{}2.png".format(ylabel, xlabel, zlabel, str(bin_limit),
                                                                  str(int(z_thresh*scaledown_treecover)), deg,
                                                                  datetime.now().isoformat().split('.')[0]
                                                                  .replace('-', '').replace(':', ''))

    print('Reading file : {}'.format(csv_file))
    print('Plot file: {}'.format(plot_file))

    val_dicts = Handler(csv_file).read_from_csv(return_dicts=True,
                                                read_random=True,
                                                line_limit=None, )

    for val_dict in val_dicts[0:10]:
        print(val_dict)

    basename = Handler(csv_file).basename.split('.csv')[0]

    elem_list = list()
    for val_dict in val_dicts:
        for i in range(3):
            x, y, z = val_dict[xvar_bands[i]], val_dict[yvar_bands[i]], val_dict[zvar_bands[i]]

            oz1, oz2 = val_dict[oz_bands[0]], val_dict[oz_bands[1]]

            if (type(x) in (int, float)) and (type(y) in (int, float)) and (type(z) in (int, float)):
Exemplo n.º 3
0
    version = 11

    filelist = list(in_dir + 'year_{}_{}_{}_fire.csv'.format(
        str(year_edge[0])[2:],
        str(year_edge[1])[2:], fire_type) for year_edge in year_edges
                    for fire_type in fire_types)

    zvals_list = list(np.zeros((zcount_lim, leny, lenx)) for _ in years)
    zcount_list = list(np.zeros((leny, lenx), dtype='int16') for _ in years)

    for filename in filelist:

        if 'single' in filename:
            print(filename)
            val_dicts = Handler(filename).read_from_csv(return_dicts=True)

            print(len(val_dicts))

            for ii, decid_year in enumerate(years):
                max_time = 0

                decid_band = 'decid{}'.format(str(decid_year))
                tc_band = 'tc{}'.format(str(decid_year))

                for val_dict in val_dicts:

                    if (type(val_dict[decid_band]).__name__ in ('int', 'float')) and \
                            (type(val_dict[tc_band]).__name__ in ('int', 'float')):

                        if float(val_dict['longitude']) > -142.0:
Exemplo n.º 4
0
import ee
import datetime
from modules import Logger, Handler

if __name__ == '__main__':

    ee.Initialize()

    folder = "c:/temp/decid/"

    scale = 30
    cutoff = 4000
    fire_year_limit = 1900
    elev_lim = 500

    Handler(dirname=folder).dir_create()

    OUTFILE = folder + \
        'gee_mack_data_extract_{}_v{}.csv'.format(str(scale),datetime.datetime.now().isoformat()
                                               .split('.')[0].replace('-', '_').replace(':', '_'))

    logfile = OUTFILE.split('.csv')[0] + '.log'

    log = Logger('SAMP', filename=logfile, stream=True)

    log.lprint('Outfile: {}'.format(OUTFILE))
    log.lprint('Logfile: {}'.format(logfile))

    decid_layer = ee.Image(
        "users/masseyr44/decid/decid_mosaic_2000_prediction_vis_nd_3")
Exemplo n.º 5
0
from modules.plots import Plot
from modules import Handler, Opt, Sublist
from sys import argv


if __name__ == '__main__':

    # script, in_dir = argv

    in_dir = 'c:/temp/check2/'
    Handler(dirname=in_dir).dir_create()

    csv_files = Handler(dirname=in_dir).find_all('.csv')

    for csv_file in csv_files:

        Opt.cprint('Reading file : {}'.format(csv_file))

        val_dicts = Handler(csv_file).read_from_csv(return_dicts=True,
                                                    read_random=True,
                                                    line_limit=None,
                                                    percent_random=10.0)

        bandname = Handler(csv_file).basename.split('.csv')[0]

        plot_file = in_dir + "{}_21.png".format(bandname)

        xvar = '{}_2'.format(bandname)
        xlabel = 'Season 2 {}'.format(bandname.upper())

        yvar = '{}_1'.format(bandname)
Exemplo n.º 6
0
                        'Unable to find the server' in e.args[0] or \
                        'getaddrinfo failed' in e.args[0] or \
                        'connection attempt failed' in e.args[0]:

                    log.lprint('Waiting {} secs...'.format(str(wait)))
                    time.sleep(wait)
                    continue

                else:
                    log.lprint('Exiting...')
                    break

            # all extracted dictionaries to file
            if i == 0:
                Handler.write_to_csv(temp_dicts,
                                     header=True,
                                     append=False,
                                     outfile=OUTFILE)

            else:
                Handler.write_to_csv(temp_dicts,
                                     header=False,
                                     append=True,
                                     outfile=OUTFILE)

            time2 = datetime.datetime.now()

            log.lprint(
                'Time taken for site {s} ({ii} of {nn}): {t} seconds'.format(
                    s=str(temp_dicts[0]['site']),
                    ii=str(site_count + 1),
                    nn=str(n_samp),
Exemplo n.º 7
0
        'ak_fire_multi_extract_v2019_08_27T20_22_51.csv'
    ]

    res = 250
    version = 1
    fire_year_limit = (1950, 2018)

    for file_base_name in filelist:
        filename = folder + file_base_name
        Opt.cprint('File: {}'.format(file_base_name))

        OUTFILE = filename.split('.')[0] + 'reformat_{}_{}.csv'.format(
            str(res), str(version))

        # convert csv files to dicts
        list_dicts = Handler(filename).read_from_csv(return_dicts=True)

        Opt.cprint(len(list_dicts))

        outcolnames = [
            'ID', 'FIREID', 'SIZE_HA', 'longitude', 'latitude', 'decid1992',
            'decid2000', 'decid2005', 'decid2010', 'decid2015', 'decid1992u',
            'decid2000u', 'decid2005u', 'decid2010u', 'decid2015u', 'tc1992',
            'tc2000', 'tc2005', 'tc2010', 'tc2015', 'tc1992u', 'tc2000u',
            'tc2005u', 'tc2010u', 'tc2015u'
        ]

        samp_list = list()
        list_latlon = list()
        list_years = list()
        for elem in list_dicts:
Exemplo n.º 8
0
    module_path = "D:/temp/decid02092020/decid/src/"
    sys.path.append(module_path)

    from modules import RFRegressor, Handler

    ulim = 1.0
    llim = 0.0
    over_adjust_ = 1.0
    clip_ = 0.01

    active_dir = "D:/temp/pickle_dir/working/"

    outdir = active_dir + "out/"

    rf_file_list = Handler(dirname=active_dir).find_all('*.pickle')
    '''
    rf_file_list = list(active_dir + filename for filename in
                        ["out_tc_2010_samp_v1_summer_RF_772.pickle",
                         "out_tc_2010_samp_v1_RF_59.pickle"])
    '''
    outfiles = list(
        filename.replace('.pickle', '.txt') for filename in rf_file_list)

    for i, filename in enumerate(rf_file_list):

        print(
            '-----------------------------------------------------------------'
        )
        print('Random Forest file {}: {}'.format(str(i + 1), filename))
        print('Output text file {}'.format(outfiles[i]))
Exemplo n.º 9
0
    outfile_multiple_list = list(out_dir + year_name + '_multiple_fire.csv' for year_name in year_names)

    # list of values
    # initialize list of lists
    single_burns = list(list() for _ in year_edges)
    multiple_burns = list(list() for _ in year_edges)

    # iterate thru files
    for fi, filename in enumerate(filelist):
        Opt.cprint('Reading file : {}'.format(filename))

        # filepath
        infile = in_dir + filename

        # read dictionaries
        val_dicts = Handler(infile).read_from_csv(return_dicts=True)

        print('Number of samp in file {}: {}'.format(filename,
                                                     str(len(val_dicts))))

        # iterate thru dictionaries
        for val_dict in val_dicts:

            out_dict = dict()

            # copy all band/column values to output dict
            for key in decid_bands + tc_bands + decid_uncertainty_bands + tc_uncertainty_bands + fire_cols:
                out_dict[key] = val_dict[key]

            year_list = list()
Exemplo n.º 10
0
from modules import Vector, Handler

if __name__ == '__main__':

    csvfile = "D:/Shared/Dropbox/projects/NAU/landsat_diva/data2/gee_mack_data_extract_30_v2019_07_09T20_11_02_3_2000.csv"
    outfile = "D:/Shared/Dropbox/projects/NAU/landsat_diva/data2/gee_mack_data_extract_30_v2019_07_09T20_11_02_3_2000.shp"

    samp_data = Handler(csvfile).read_from_csv(return_dicts=True)

    headers = list(samp_data[0])

    spref_str = '+proj=longlat +datum=WGS84'

    wkt_list = list()
    attr_list = list()
    attribute_types = dict()

    for header in headers:
        attribute_types[header] = Handler.string_to_type(samp_data[0][header],
                                                         return_type=True)

    # attribute_types['DecidFracR'] = 'str'
    # attribute_types['TreeCovR'] = 'str'

    for k, v in attribute_types.items():
        print('{} - {}'.format(str(k), str(v)))

    for elem in samp_data:
        wkt_list.append(
            Vector.wkt_from_coords((elem['longitude'], elem['latitude']),
                                   geom_type='point'))
Exemplo n.º 11
0
    heatmap.draw()

    # **************************************************
    """
    # plotting regression heatmap2
    val_log = "C:/temp/tree_cover/out_tc_2010_samp_v1_RF_2.txt"
    '''
    pickle_file = "C:/temp/tree_cover/out_tc_2010_samp_v1_RF_2.pickle"
    classifier = RFRegressor.load_from_pickle(pickle_file)

    data_dict = classifier.sample_predictions(classifier.data)
    x = data_dict['obs_y']
    y = data_dict['pred_y']

    '''
    val_lines = Handler(val_log).read_text_by_line()
    x = list(float(elem.strip()) for elem in val_lines[0].split(',')[1:])
    y = list(float(elem.strip()) for elem in val_lines[1].split(',')[1:])

    pts = [(x[i], y[i]) for i in range(0, len(x))]

    print(pts[0:10])

    plotfile = 'C:/temp/tree_cover/out_tc_2010_samp_v1_RF_2_val.png'

    plot_heatmap = {
        'type': 'rheatmap2',
        'points': pts,
        'xlabel': 'Observed Tree Cover',
        'ylabel': 'Predicted Tree Cover',
        'color_bar_label': 'Data-points per bin',