def main(): args = parse_args() model = Model() with open(args.model, 'rb') as file: model.load(file) generator = Generator(model) if args.output is not None: file = open(args.output, 'a', encoding='utf-8') else: file = stdout for i in range(0, args.count): text = generator.generate(args.length, seed=args.seed, min_n=args.min_n, n=args.n, break_on_end=args.break_on_end) if args.wrap: text = '\n'.join(wrap(text)) print(text, '\n', file=file) if args.output is not None: file.close()
def upload_image(): if request.method == 'POST': if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] if file.filename == '': flash('No image selected for uploading') return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) print(os.path.join(app.config['UPLOAD_FOLDER'], filename)) flash('Image successfully uploaded') text = IT.imageToText( os.path.join(app.config['UPLOAD_FOLDER'], filename)) summary = Model.main(text) return render_template('index.html', filename=filename, text=text, summary=summary) else: flash('Extensions not Allowed') return redirect(request.url)
def train(hidden_dim_sweep=(5, 10, 25), n_epochs=20, out_dir='out', data_dir='data', device=util.device(), Optimizer=optim.Adam, seed=42): out_dir, data_dir = map(Path, (out_dir, data_dir)) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) tracess = [] best_trainer = None best_loss = util.INF vocab = util.Vocab.load(data_dir / 'vocab.txt') for hidden_dim in hidden_dim_sweep: model = Model(hidden_dim=hidden_dim, vocab=vocab, out_dim=2) loss_fn = nn.CrossEntropyLoss() optimizer = Optimizer(model.parameters(), lr=1e-4) trainer = Trainer(model, loss_fn, vocab, device) traces, loss_cur = trainer.train_loop(data_dir=data_dir, n_epochs=n_epochs, optimizer=optimizer, scheduler=None) if loss_cur < best_loss: best_trainer = trainer best_loss = loss_cur tracess.append((hidden_dim, traces)) out_dir.mkdir(exist_ok=True) for h, traces in tracess: plotting.plot_traces(traces, out=out_dir / f'traces_{h}.png', title=f'Loss,hidden_dim={h}') util.jsondump(traces, out_dir / f'traces.dim_{h}.seed_{seed}.json') L.info('Best model loss: %s', best_loss) model_file = out_dir / 'model.pt' L.info('Saving best model to %s', model_file) torch.save(best_trainer.model.state_dict(), model_file)
def test(hidden_dim=25, out_dir='out', data_dir='data', device=util.device()): out_dir, data_dir = map(Path, (out_dir, data_dir)) vocab = util.Vocab.load(data_dir / 'vocab.txt') model = Model(hidden_dim=hidden_dim, vocab=vocab) model.load_state_dict(torch.load(out_dir / 'model.pt')) loss_fn = nn.CrossEntropyLoss() trainer = Trainer(model, loss_fn, vocab, device) with data.SentPairStream(data_dir / 'dev.tsv') as dev_data: dev_loader = torchdata.DataLoader(dev_data, shuffle=False, batch_size=8) dev_metrics = trainer.eval_(dev_loader) L.info('Dev performance: %s', dev_metrics) with data.SentPairStream(data_dir / 'test.tsv') as test_data: test_loader = torchdata.DataLoader(test_data, shuffle=False, batch_size=8) test_metrics = trainer.eval_(test_loader) L.info('Test performance: %s', test_metrics)
def test_cl_rsd(): ell = np.arange(2, 500) # Anna Porredon cl_anna = np.loadtxt('C_ells_bin1_1_linear.txt') # Mehdi Rezaie cosmo = init_cosmology() z, b, dNdz = init_sample('mock', verb=False) th = Model(cosmo) th.add_tracer(z, b, dNdz) cl_null = th.compute_cl(ell, fnl=0.0, has_rsd=False, has_fnl=False) cl_rsd = th.compute_cl(ell, fnl=0.0, has_rsd=True, has_fnl=False) ## additional runs #cl_fnlp = th.compute_cl(ell, fnl=100.0, has_rsd=True, has_fnl=True) #cl_fnln = th.compute_cl(ell, fnl=-100.0, has_rsd=True, has_fnl=True) #cls_ccl = run_ccl(cosmo, (z, dNdz), (z, b), ell) #cls_ccl_rsd = run_ccl(cosmo, (z, dNdz), (z, b), ell, has_rsd=True) assert (abs(cl_rsd-cl_anna[2:, 1]) < 1.0e-6).all() fig, ax = plt.subplots() ax.plot(ell, cl_null, 'C0--', alpha=0.5, label='FFTlog') ax.plot(ell, cl_rsd, 'C0-', lw=1, alpha=0.5, label='FFTlog+RSD') ax.plot(cl_anna[2:, 0], cl_anna[2:, 1], 'r:', label='Anna') ## additional curves #ax.plot(ell, cl_fnlp, 'C0-.', lw=1, label='FFTlog+RSD (fnl=100)') #ax.plot(ell, cl_fnln, 'C1-.', lw=1, label='FFTlog+RSD (fnl=-100)') #ax.plot(ell, a*cls_ccl, 'C1-', alpha=0.8, label='CCL (Limber)') #ax.plot(ell, a*cls_ccl_rsd,'C1--', lw=1, label='CCL+RSD') ax.legend(frameon=False, ncol=2, loc='lower left', fontsize=10) ax.set(xscale='log', yscale='log', xlabel=r'$\ell$', ylabel=r'C$_{\ell}$') ax.tick_params(direction='in', which='both', axis='both', right=True, top=True) ax.grid(True, ls=':', color='grey', which='both', lw=0.2) # ax0 = fig.add_axes([0.2, 0.2, 0.4, 0.3]) # add_plot(ax0) # ax0.set(xlim=(1.9, 5), ylim=(0.9e-6, 2.1e-6)) # ax0.set_xticks([2, 3, 4]) ax.set_ylim(8.0e-8, 2.0e-5) fig.savefig('cl_fftlog_ccl_benchmark.png', dpi=300, bbox_inches='tight', facecolor='w')
def main(): parser = argparse.ArgumentParser() parser.add_argument('--model_name', type=str, required=True) parser.add_argument('--vocabulary_file', type=str, required=True) parser.add_argument('--output_file', type=str, required=True) parser.add_argument('--seed', type=str, default="Once upon a time, ") parser.add_argument('--sample_length', type=int, default=1500) parser.add_argument('--log_frequency', type=int, default=100) args = parser.parse_args() model_name = args.model_name vocabulary_file = args.vocabulary_file output_file = args.output_file seed = args.seed.decode('utf-8') sample_length = args.sample_length log_frequency = args.log_frequency model = Model(model_name) model.restore() classifier = model.get_classifier() vocabulary = Vocabulary() vocabulary.retrieve(vocabulary_file) sample_file = codecs.open(output_file, 'w', 'utf_8') stack = deque([]) for i in range(0, model.sequence_length - len(seed)): stack.append(u' ') for char in seed: if char not in vocabulary.vocabulary: print char,"is not in vocabulary file" char = u' ' stack.append(char) sample_file.write(char) with tf.Session() as sess: tf.global_variables_initializer().run() saver = tf.train.Saver(tf.global_variables()) ckpt = tf.train.get_checkpoint_state(model_name) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) for i in range(0, sample_length): vector = [] for char in stack: vector.append(vocabulary.binary_vocabulary[char]) vector = np.array([vector]) prediction = sess.run(classifier, feed_dict={model.x: vector}) predicted_char = vocabulary.char_lookup[np.argmax(prediction)] stack.popleft() stack.append(predicted_char) sample_file.write(predicted_char) if i % log_frequency == 0: print "Progress: {}%".format((i * 100) / sample_length) sample_file.close() print "Sample saved in {}".format(output_file)
def main(): parser = argparse.ArgumentParser() parser.add_argument('--training_file', type=str, required=True) parser.add_argument('--vocabulary_file', type=str, required=True) parser.add_argument('--model_name', type=str, required=True) parser.add_argument('--epoch', type=int, default=200) parser.add_argument('--batch_size', type=int, default=50) parser.add_argument('--sequence_length', type=int, default=50) parser.add_argument('--log_frequency', type=int, default=100) parser.add_argument('--learning_rate', type=int, default=0.002) parser.add_argument('--units_number', type=int, default=128) parser.add_argument('--layers_number', type=int, default=2) args = parser.parse_args() training_file = args.training_file vocabulary_file = args.vocabulary_file model_name = args.model_name epoch = args.epoch batch_size = args.batch_size sequence_length = args.sequence_length log_frequency = args.log_frequency learning_rate = args.learning_rate batch = Batch(training_file, vocabulary_file, batch_size, sequence_length) input_number = batch.vocabulary.size classes_number = batch.vocabulary.size units_number = args.units_number layers_number = args.layers_number print "Start training with epoch: {}, batch_size: {}, log_frequency: {}," \ "learning_rate: {}".format(epoch, batch_size, log_frequency, learning_rate) if not os.path.exists(model_name): os.makedirs(model_name) model = Model(model_name) model.build(input_number, sequence_length, layers_number, units_number, classes_number) classifier = model.get_classifier() cost = tf.reduce_mean(tf.square(classifier - model.y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) expected_prediction = tf.equal(tf.argmax(classifier, 1), tf.argmax(model.y, 1)) accuracy = tf.reduce_mean(tf.cast(expected_prediction, tf.float32)) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) iteration = 0 while batch.dataset_full_passes < epoch: iteration += 1 batch_x, batch_y = batch.get_next_batch() batch_x = batch_x.reshape((batch_size, sequence_length, input_number)) sess.run(optimizer, feed_dict={model.x: batch_x, model.y: batch_y}) if iteration % log_frequency == 0: acc = sess.run(accuracy, feed_dict={model.x: batch_x, model.y: batch_y}) loss = sess.run(cost, feed_dict={model.x: batch_x, model.y: batch_y}) print("Iteration {}, batch loss: {:.6f}, training accuracy: {:.5f}".format(iteration * batch_size, loss, acc)) batch.clean() print("Optimization done") saver = tf.train.Saver(tf.global_variables()) checkpoint_path = "{}/{}.ckpt".format(model_name, model_name) saver.save(sess, checkpoint_path, global_step=iteration * batch_size) print("Model saved in {}".format(model_name))
], p=1.0) t_dataset=MelanomaDataset(df=df, imfolder=test, train=False, transforms=test_transform, meta_features=meta_features) print('Length of test set is {}'.format(len(t_dataset))) testloader=DataLoader(t_dataset, batch_size=8, shuffle=False, num_workers=8) """Testing""" # model = ResNetModel()() # model = EfficientModel() # model = EfficientModel(n_meta_features=len(meta_features)) model = Model(arch='efficientnet-b1') # model.load_state_dict(torch.load("../checkpoint/fold_1/efficient_256/efficientb0_256_14_0.9212.pth", map_location=torch.device(device))) model.load_state_dict(torch.load("..//checkpoint/fold_1/efficient_320/efficientb1_320_14_0.9293.pth", map_location=torch.device(device))) model.to(device) model.eval() test_prob_stack = [] img_ids = [] with torch.no_grad(): for i in range(15): test_prob = [] for img, meta, img_id in tqdm(testloader): if train_on_gpu: img, meta = img.to(device), meta.to(device) logits = model.forward(img)
def signIn(_data): _user = Model.UserExists(_data) if _user: auth.logInUser(_user) return True return False
import numpy as np import matplotlib.pyplot as plt from IPython.display import display, Math import zeus from modules import init_cosmology, init_sample, Model import sys sys.path.append('/Users/rezaie/github/LSSutils') from lssutils.utils import histogram_cell # --- theory cosmo = init_cosmology() z, b, dNdz = init_sample() model = Model(cosmo) model.add_tracer(z, b, dNdz) # data cl_mocks = np.load('cl_mocks_1k.npz', allow_pickle=True) cl_full = cl_mocks['full'] # select full sky mocks # bin measurements bins = np.arange(1, 501, 20) cl_fullb = [] for i in range(cl_full.shape[0]): x, clb_ = histogram_cell(cl_full[i, :], bins=bins) cl_fullb.append(clb_) #print('.', end='') cl_fullb = np.array(cl_fullb) y = cl_fullb.mean(axis=0) nmocks, nbins = cl_fullb.shape hf = (nmocks - 1.0) / (nmocks - nbins - 2.0)
t_dataset=MelanomaDataset(df=df_train, imfolder=train, train=True, transforms=train_transform, meta_features=meta_features) v_dataset=MelanomaDataset(df=df_valid, imfolder=train, train=True, transforms=valid_transform, meta_features=meta_features) print('Length of training and validation set are {} {}'.format( len(t_dataset), len(v_dataset))) trainloader=DataLoader(t_dataset, batch_size=32, shuffle=True, num_workers=8) validloader=DataLoader(v_dataset, batch_size=32, shuffle=False, num_workers=8) """ Training """ # model = ResNetModel() # model = EfficientModelwithoutMeta() model = Model(arch='efficientnet-b2') # model = EfficientModel(n_meta_features=len(meta_features)) model.to(device) # model = nn.DataParallel(model) criterion=nn.BCEWithLogitsLoss() optimizer=torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.999)) scheduler=torch.optim.lr_scheduler.OneCycleLR( optimizer, max_lr=3e-4, div_factor=10, pct_start=1 / epochs, steps_per_epoch=len(trainloader), epochs=epochs) writer = SummaryWriter(f'../checkpoint/fold_{fold}/efficient_{resolution}') print(f'Training Started Fold_{fold}') training_loss = [] validation_loss = [] c_acc = 0.0