Exemplo n.º 1
0
    def toMolecule(self, formalcharges=False, ids=None):
        """
        Return the moleculekit.molecule.Molecule

        Parameters
        ----------
        formalcharges: bool
            If True,the formal charges are used instead of partial ones
        ids: list
            The list of conformer ids to store in the moleculekit Molecule object- If None, all are returned
            Default: None

        Returns
        -------
        mol: moleculekit.molecule.Molecule
            The moleculekit Molecule object

        """
        from moleculekit.molecule import Molecule

        class NoConformerError(Exception):
            pass

        if ids is None:
            ids = np.arange(self.numFrames)

        if self.numFrames == 0:
            raise NoConformerError(
                "No Conformers are found in the molecule. Generate at least one conformer."
            )
        elif not isinstance(ids, list) and not isinstance(ids, np.ndarray):
            raise ValueError(
                'The argument ids should be a list of confomer ids')

        mol = Molecule()
        mol.empty(self.numAtoms)
        mol.record[:] = 'HETATM'
        mol.resname[:] = self.ligname[:3]
        mol.resid[:] = self._resid
        mol.coords = self._coords[:, :, ids]
        mol.name[:] = self._name
        mol.element[:] = self._element
        if formalcharges:
            mol.charge[:] = self._formalcharge
        else:
            mol.charge[:] = self._charge
        mol.box = np.zeros((3, self.numFrames), dtype=np.float32)
        mol.viewname = self.ligname
        mol.bonds = self._bonds
        mol.bondtype = self._bondtype
        mol.atomtype = self._atomtype
        return mol
Exemplo n.º 2
0
    def setUpClass(self):
        from moleculekit.home import home
        from moleculekit.molecule import Molecule
        from moleculekit.tools.preparation import proteinPrepare
        from moleculekit.tools.autosegment import autoSegment

        self.testf = os.path.join(home(), 'test-data', 'test-voxeldescriptors')
        mol = Molecule(os.path.join(self.testf, '3PTB.pdb'))
        mol.filter('protein')
        mol = autoSegment(mol, field='both')
        mol = proteinPrepare(mol)
        mol.bonds = mol._guessBonds()
        self.mol = mol
Exemplo n.º 3
0
    def setUpClass(self):
        from moleculekit.home import home
        from moleculekit.molecule import Molecule
        from moleculekit.tools.preparation import systemPrepare
        from moleculekit.tools.autosegment import autoSegment

        self.testf = os.path.join(home(), "test-data", "test-voxeldescriptors")
        mol = Molecule(os.path.join(self.testf, "3PTB.pdb"))
        mol.filter("protein")
        mol = autoSegment(mol, field="both")
        mol = systemPrepare(mol, pH=7.0)
        mol.bonds = mol._guessBonds()
        self.mol = mol
    def test_metricsphericalcoordinate(self):
        from moleculekit.molecule import Molecule
        from moleculekit.home import home
        from os import path

        mol = Molecule(
            path.join(home(dataDir='test-projections'), 'trajectory',
                      'filtered.pdb'))
        ref = mol.copy()
        mol.read(
            path.join(home(dataDir='test-projections'), 'trajectory',
                      'traj.xtc'))
        mol.bonds = mol._guessBonds()

        res = MetricSphericalCoordinate(ref, 'resname MOL',
                                        'within 8 of resid 98').project(mol)
        _ = MetricSphericalCoordinate(ref, 'resname MOL',
                                      'within 8 of resid 98').getMapping(mol)

        ref_array = np.load(
            path.join(home(dataDir='test-projections'),
                      'metricsphericalcoordinate', 'res.npy'))
        assert np.allclose(res, ref_array, rtol=0, atol=1e-04)
Exemplo n.º 5
0
def pdb2psf_CA(pdb_name_in, psf_name_out, bonds=True, angles=True):
    mol = Molecule(pdb_name_in)
    mol.filter("name CA")

    n = mol.numAtoms

    atom_types = []
    for i in range(n):
        atom_types.append(CA_MAP[(mol.resname[i], mol.name[i])])

    if bonds:
        bonds = np.concatenate(
            (
                np.arange(n - 1).reshape([n - 1, 1]),
                (np.arange(1, n).reshape([n - 1, 1])),
            ),
            axis=1,
        )
    else:
        bonds = np.empty([0, 2], dtype=np.int32)

    if angles:
        angles = np.concatenate(
            (
                np.arange(n - 2).reshape([n - 2, 1]),
                (np.arange(1, n - 1).reshape([n - 2, 1])),
                (np.arange(2, n).reshape([n - 2, 1])),
            ),
            axis=1,
        )
    else:
        angles = np.empty([0, 3], dtype=np.int32)

    mol.atomtype = np.array(atom_types)
    mol.bonds = bonds
    mol.angles = angles
    mol.write(psf_name_out)
Exemplo n.º 6
0
def build(mol,
          ff=None,
          topo=None,
          param=None,
          prefix='structure',
          outdir='./build',
          caps=None,
          ionize=True,
          saltconc=0,
          saltanion=None,
          saltcation=None,
          disulfide=None,
          teleap=None,
          teleapimports=None,
          execute=True,
          atomtypes=None,
          offlibraries=None,
          gbsa=False,
          igb=2):
    """ Builds a system for AMBER

    Uses tleap to build a system for AMBER. Additionally it allows the user to ionize and add disulfide bridges.

    Parameters
    ----------
    mol : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The Molecule object containing the system
    ff : list of str
        A list of leaprc forcefield files.
        Use :func:`amber.listFiles <htmd.builder.amber.listFiles>` to get a list of available forcefield files.
        Default: :func:`amber.defaultFf <htmd.builder.amber.defaultFf>`
    topo : list of str
        A list of topology `prepi/prep/in` files.
        Use :func:`amber.listFiles <htmd.builder.amber.listFiles>` to get a list of available topology files.
        Default: :func:`amber.defaultTopo <htmd.builder.amber.defaultTopo>`
    param : list of str
        A list of parameter `frcmod` files.
        Use :func:`amber.listFiles <htmd.builder.amber.listFiles>` to get a list of available parameter files.
        Default: :func:`amber.defaultParam <htmd.builder.amber.defaultParam>`
    prefix : str
        The prefix for the generated pdb and psf files
    outdir : str
        The path to the output directory
        Default: './build'
    caps : dict
        A dictionary with keys segids and values lists of strings describing the caps for a particular protein segment.
        e.g. caps['P'] = ['ACE', 'NME'] or caps['P'] = ['none', 'none']. Default: will apply ACE and NME caps to every
        protein segment.
    ionize : bool
        Enable or disable ionization
    saltconc : float
        Salt concentration to add to the system after neutralization.
    saltanion : {'Cl-'}
        The anion type. Please use only AMBER ion atom names.
    saltcation : {'Na+', 'K+', 'Cs+'}
        The cation type. Please use only AMBER ion atom names.
    disulfide : list of pairs of atomselection strings
        If None it will guess disulfide bonds. Otherwise provide a list pairs of atomselection strings for each pair of
        residues forming the disulfide bridge.
    teleap : str
        Path to teLeap executable used to build the system for AMBER
    teleapimports : list
        A list of paths to pass to teLeap '-I' flag, i.e. directories to be searched
        Default: determined from :func:`amber.defaultAmberHome <htmd.builder.amber.defaultAmberHome>` and
        :func:`amber.htmdAmberHome <htmd.builder.amber.htmdAmberHome>`
    execute : bool
        Disable building. Will only write out the input script needed by tleap. Does not include ionization.
    atomtypes : list of triplets
        Custom atom types defined by the user as ('type', 'element', 'hybrid') triplets
        e.g. (('C1', 'C', 'sp2'), ('CI', 'C', 'sp3')). Check `addAtomTypes` in AmberTools docs.
    offlibraries : str or list
        A path or a list of paths to OFF library files. Check `loadOFF` in AmberTools docs.
    gbsa : bool
        Modify radii for GBSA implicit water model
    igb : int
        GB model. Select: 1 for mbondi, 2 and 5 for mbondi2, 7 for bondi and 8 for mbondi3.
        Check section 4. The Generalized Born/Surface Area Model of the AMBER manual.

    Returns
    -------
    molbuilt : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The built system in a Molecule object

    Example
    -------
    >>> from htmd.ui import *  # doctest: +SKIP
    >>> mol = Molecule("3PTB")
    >>> molbuilt = amber.build(mol, outdir='/tmp/build')  # doctest: +SKIP
    >>> # More complex example
    >>> disu = [['segid P and resid 157', 'segid P and resid 13'], ['segid K and resid 1', 'segid K and resid 25']]
    >>> molbuilt = amber.build(mol, outdir='/tmp/build', saltconc=0.15, disulfide=disu)  # doctest: +SKIP
    """
    # Remove pdb protein bonds as they can be regenerated by tleap. Keep non-protein bonds i.e. for ligands
    mol = mol.copy()
    _removeProteinBonds(mol)

    if teleap is None:
        teleap = _findTeLeap()
    else:
        if shutil.which(teleap) is None:
            raise NameError(
                'Could not find executable: `{}` in the PATH. Cannot build for AMBER.'
                .format(teleap))

    if not os.path.isdir(outdir):
        os.makedirs(outdir)
    _cleanOutDir(outdir)
    if ff is None:
        ff = defaultFf()
    if topo is None:
        topo = defaultTopo()
    if param is None:
        param = defaultParam()
    if caps is None:
        caps = _defaultProteinCaps(mol)

    _missingSegID(mol)
    _checkMixedSegment(mol)

    mol = _charmmLipid2Amber(mol)

    _applyProteinCaps(mol, caps)

    f = open(os.path.join(outdir, 'tleap.in'), 'w')
    f.write('# tleap file generated by amber.build\n')

    # Printing out the forcefields
    for i, force in enumerate(ensurelist(ff)):
        if not os.path.isfile(force):
            force = _locateFile(force, 'ff', teleap)
            if force is None:
                continue
        newname = 'ff{}_{}'.format(i, os.path.basename(force))
        shutil.copy(force, os.path.join(outdir, newname))
        f.write('source {}\n'.format(newname))
    f.write('\n')

    if gbsa:
        gbmodels = {
            1: 'mbondi',
            2: 'mbondi2',
            5: 'mbondi2',
            7: 'bondi',
            8: 'mbondi3'
        }
        f.write('set default PBradii {}\n\n'.format(gbmodels[igb]))

    # Adding custom atom types
    if atomtypes is not None:
        atomtypes = ensurelist(tocheck=atomtypes[0], tomod=atomtypes)
        f.write('addAtomTypes {\n')
        for at in atomtypes:
            if len(at) != 3:
                raise RuntimeError(
                    'Atom type definitions have to be triplets. Check the AMBER documentation.'
                )
            f.write('    {{ "{}" "{}" "{}" }}\n'.format(at[0], at[1], at[2]))
        f.write('}\n\n')

    # Loading OFF libraries
    if offlibraries is not None:
        offlibraries = ensurelist(offlibraries)
        for i, off in enumerate(offlibraries):
            if not os.path.isfile(off):
                raise RuntimeError(
                    'Could not find off-library in location {}'.format(off))
            newname = 'offlib{}_{}'.format(i, os.path.basename(off))
            shutil.copy(off, os.path.join(outdir, newname))
            f.write('loadoff {}\n'.format(newname))

    # Loading frcmod parameters
    f.write('# Loading parameter files\n')
    for i, p in enumerate(param):
        if not os.path.isfile(p):
            p = _locateFile(p, 'param', teleap)
            if p is None:
                continue
        newname = 'param{}_{}'.format(i, os.path.basename(p))
        shutil.copy(p, os.path.join(outdir, newname))
        f.write('loadamberparams {}\n'.format(newname))
    f.write('\n')

    # Loading prepi topologies
    f.write('# Loading prepi topologies\n')
    for i, t in enumerate(topo):
        if not os.path.isfile(t):
            t = _locateFile(t, 'topo', teleap)
            if t is None:
                continue
        newname = 'topo{}_{}'.format(i, os.path.basename(t))
        shutil.copy(t, os.path.join(outdir, newname))
        f.write('loadamberprep {}\n'.format(newname))
    f.write('\n')

    f.write('# Loading the system\n')
    f.write('mol = loadpdb input.pdb\n\n')

    if np.sum(mol.atomtype != '') != 0:
        logger.debug('Writing mol2 files for input to tleap.')
        segs = np.unique(mol.segid[mol.atomtype != ''])
        combstr = 'mol = combine {mol'
        for s in segs:
            name = 'segment{}'.format(s)
            mol2name = os.path.join(outdir, '{}.mol2'.format(name))
            mol.write(mol2name, (mol.atomtype != '') & (mol.segid == s))
            if not os.path.isfile(mol2name):
                raise NameError(
                    'Could not write a mol2 file out of the given Molecule.')
            f.write('# Loading the rest of the system\n')
            f.write('{} = loadmol2 {}.mol2\n\n'.format(name, name))
            combstr += ' {}'.format(name)
        combstr += '}\n\n'
        f.write(combstr)

    # Write patches for disulfide bonds (only after ionizing)
    if not ionize:
        # TODO: Remove this once we deprecate the class
        from htmd.builder.builder import DisulfideBridge
        from moleculekit.molecule import UniqueResidueID
        if disulfide is not None and len(disulfide) != 0 and isinstance(
                disulfide[0], DisulfideBridge):
            newdisu = []
            for d in disulfide:
                r1 = UniqueResidueID.fromMolecule(
                    mol, 'resid {} and segname {}'.format(d.resid1, d.segid1))
                r2 = UniqueResidueID.fromMolecule(
                    mol, 'resid {} and segname {}'.format(d.resid2, d.segid2))
                newdisu.append([r1, r2])
            disulfide = newdisu
        # TODO: Remove up to here ----------------------

        if disulfide is not None and len(disulfide) != 0 and isinstance(
                disulfide[0][0], str):
            disulfide = convertDisulfide(mol, disulfide)

        if disulfide is None:
            logger.info('Detecting disulfide bonds.')
            disulfide = detectDisulfideBonds(mol)

        # Fix structure to match the disulfide patching
        if len(disulfide) != 0:
            torem = np.zeros(mol.numAtoms, dtype=bool)
            f.write('# Adding disulfide bonds\n')
            for d in disulfide:
                # Rename the residues to CYX if there is a disulfide bond
                atoms1 = d[0].selectAtoms(mol, indexes=False)
                atoms2 = d[1].selectAtoms(mol, indexes=False)
                mol.resname[atoms1] = 'CYX'
                mol.resname[atoms2] = 'CYX'
                # Remove (eventual) HG hydrogens on these CYS (from proteinPrepare)
                torem |= (atoms1 & (mol.name == 'HG')) | (atoms2 &
                                                          (mol.name == 'HG'))
                # Convert to stupid amber residue numbering
                uqseqid = sequenceID(
                    (mol.resid, mol.insertion, mol.segid)) + mol.resid[0]
                uqres1 = int(np.unique(uqseqid[atoms1]))
                uqres2 = int(np.unique(uqseqid[atoms2]))
                f.write('bond mol.{}.SG mol.{}.SG\n'.format(uqres1, uqres2))
            f.write('\n')
            mol.remove(torem, _logger=False)

    # Calculate the bounding box and store it in the CRD file
    f.write('setBox mol "vdw"\n\n')

    f.write('# Writing out the results\n')
    f.write('saveamberparm mol ' + prefix + '.prmtop ' + prefix + '.crd\n')
    f.write('quit')
    f.close()

    # Printing and loading the PDB file. AMBER can work with a single PDB file if the segments are separate by TER
    logger.debug('Writing PDB file for input to tleap.')
    pdbname = os.path.join(outdir, 'input.pdb')

    # mol2 files have atomtype, here we only write parts not coming from mol2
    # We need to write the input.pdb at the end since we modify the resname for disulfide bridges in mol
    mol.write(pdbname, mol.atomtype == '')
    if not os.path.isfile(pdbname):
        raise NameError(
            'Could not write a PDB file out of the given Molecule.')

    molbuilt = None
    if execute:
        if not teleapimports:
            teleapimports = []
            # Source default Amber (i.e. the same paths tleap imports)
            amberhome = defaultAmberHome(teleap=teleap)
            teleapimports += [
                os.path.join(amberhome, s)
                for s in _defaultAmberSearchPaths.values()
            ]
            if len(teleapimports) == 0:
                raise RuntimeWarning(
                    'No default Amber force-field found. Check teLeap location: {}'
                    .format(teleap))
            # Source HTMD Amber paths that contain ffs
            htmdamberdir = htmdAmberHome()
            teleapimports += [
                os.path.join(htmdamberdir, os.path.dirname(f)) for f in ff
                if os.path.isfile(os.path.join(htmdamberdir, f))
            ]
            if len(teleapimports) == 0:
                raise RuntimeError(
                    'No default Amber force-field imports found. Check '
                    '`htmd.builder.amber.defaultAmberHome()` and `htmd.builder.amber.htmdAmberHome()`'
                )
        # Set import flags for teLeap
        teleapimportflags = []
        for p in teleapimports:
            teleapimportflags.append('-I')
            teleapimportflags.append(str(p))
        logpath = os.path.abspath(os.path.join(outdir, 'log.txt'))
        logger.info('Starting the build.')
        currdir = os.getcwd()
        os.chdir(outdir)
        f = open(logpath, 'w')
        try:
            cmd = [teleap, '-f', './tleap.in']
            cmd[1:1] = teleapimportflags
            logger.debug(cmd)
            call(cmd, stdout=f)
        except:
            raise NameError('teLeap failed at execution')
        f.close()
        errors = _logParser(logpath)
        os.chdir(currdir)
        if errors:
            raise BuildError(errors + [
                'Check {} for further information on errors in building.'.
                format(logpath)
            ])
        logger.info('Finished building.')

        if os.path.exists(os.path.join(outdir, 'structure.crd')) and \
                        os.path.getsize(os.path.join(outdir, 'structure.crd')) != 0 and \
                        os.path.getsize(os.path.join(outdir, 'structure.prmtop')) != 0:
            try:
                molbuilt = Molecule(os.path.join(outdir, 'structure.prmtop'))
                molbuilt.read(os.path.join(outdir, 'structure.crd'))
            except Exception as e:
                raise RuntimeError(
                    'Failed at reading structure.prmtop/structure.crd due to error: {}'
                    .format(e))
        else:
            raise BuildError(
                'No structure pdb/prmtop file was generated. Check {} for errors in building.'
                .format(logpath))

        if ionize:
            shutil.move(os.path.join(outdir, 'structure.crd'),
                        os.path.join(outdir, 'structure.noions.crd'))
            shutil.move(os.path.join(outdir, 'structure.prmtop'),
                        os.path.join(outdir, 'structure.noions.prmtop'))
            totalcharge = np.sum(molbuilt.charge)
            nwater = np.sum(molbuilt.atomselect('water and noh'))
            anion, cation, anionatom, cationatom, nanion, ncation = ionizef(
                totalcharge,
                nwater,
                saltconc=saltconc,
                anion=saltanion,
                cation=saltcation)
            newmol = ionizePlace(mol, anion, cation, anionatom, cationatom,
                                 nanion, ncation)
            # Redo the whole build but now with ions included
            return build(newmol,
                         ff=ff,
                         topo=topo,
                         param=param,
                         prefix=prefix,
                         outdir=outdir,
                         caps={},
                         ionize=False,
                         execute=execute,
                         saltconc=saltconc,
                         disulfide=disulfide,
                         teleap=teleap,
                         atomtypes=atomtypes,
                         offlibraries=offlibraries)

    tmpbonds = molbuilt.bonds
    molbuilt.bonds = []  # Removing the bonds to speed up writing
    molbuilt.write(os.path.join(outdir, 'structure.pdb'))
    molbuilt.bonds = tmpbonds  # Restoring the bonds
    detectCisPeptideBonds(molbuilt)  # Warn in case of cis bonds
    return molbuilt
Exemplo n.º 7
0
def pdb2psf_CACB(pdb_name_in, psf_name_out, bonds=True, angles=True):
    mol = Molecule(pdb_name_in)
    mol.filter("name CA CB")

    n = mol.numAtoms

    atom_types = []
    for i in range(n):
        atom_types.append(CACB_MAP[(mol.resname[i], mol.name[i])])

    CA_idx = []
    CB_idx = []
    for i, name in enumerate(mol.name):
        if name[:2] == "CA":
            CA_idx.append(i)
        else:
            CB_idx.append(i)

    if bonds:
        CA_bonds = np.concatenate(
            (
                np.array(CA_idx)[:-1].reshape([len(CA_idx) - 1, 1]),
                np.array(CA_idx)[1:].reshape([len(CA_idx) - 1, 1]),
            ),
            axis=1,
        )
        CB_bonds = np.concatenate(
            (
                np.array(CB_idx).reshape(len(CB_idx), 1) - 1,
                np.array(CB_idx).reshape(len(CB_idx), 1),
            ),
            axis=1,
        )
        bonds = np.concatenate((CA_bonds, CB_bonds))
    else:
        bonds = np.empty([0, 2], dtype=np.int32)

    if angles:
        CA_angles = np.concatenate(
            (
                np.array(CA_idx)[:-2].reshape([len(CA_idx) - 2, 1]),
                np.array(CA_idx)[1:-1].reshape([len(CA_idx) - 2, 1]),
                np.array(CA_idx)[2:].reshape([len(CA_idx) - 2, 1]),
            ),
            axis=1,
        )

        CB_angles = []
        cbn = 0
        for i in CA_idx:
            if mol.resname[i] != "GLY":
                if i != 0:
                    CB_angles.append(
                        [CA_idx[CA_idx.index(i) - 1], i, CB_idx[cbn]])
                if i != CA_idx[-1]:
                    CB_angles.append(
                        [CA_idx[CA_idx.index(i) + 1], i, CB_idx[cbn]])
                cbn += 1
        CB_angles = np.array(CB_angles)
        angles = np.concatenate((CA_angles, CB_angles))

    else:
        angles = np.empty([0, 3], dtype=np.int32)

    mol.atomtype = np.array(atom_types)
    mol.bonds = bonds
    mol.angles = angles
    mol.write(psf_name_out)