Exemplo n.º 1
0
 def test_correct(self, affine, scale, expected):
     output = zoom_affine(affine, scale, diagonal=False)
     ornt_affine = nib.orientations.ornt2axcodes(
         nib.orientations.io_orientation(output))
     ornt_output = nib.orientations.ornt2axcodes(
         nib.orientations.io_orientation(affine))
     np.testing.assert_array_equal(ornt_affine, ornt_output)
     np.testing.assert_allclose(output, expected, rtol=1e-6, atol=1e-6)
Exemplo n.º 2
0
 def __call__(self, data_array, affine=None, interp_order=3):
     """
     Args:
         data_array (ndarray): in shape (num_channels, H[, W, ...]).
         affine (matrix): (N+1)x(N+1) original affine matrix for spatially ND `data_array`. Defaults to identity.
         interp_order (int): The order of the spline interpolation, default is 3.
             The order has to be in the range 0-5.
             https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html
     Returns:
         data_array (resampled into `self.pixdim`), original pixdim, current pixdim.
     """
     sr = data_array.ndim - 1
     if sr <= 0:
         raise ValueError(
             "the array should have at least one spatial dimension.")
     if affine is None:
         # default to identity
         affine = np.eye(sr + 1, dtype=np.float64)
         affine_ = np.eye(sr + 1, dtype=np.float64)
     else:
         affine_ = to_affine_nd(sr, affine)
     out_d = self.pixdim[:sr]
     if out_d.size < sr:
         out_d = np.append(out_d, [1.0] * (out_d.size - sr))
     if np.any(out_d <= 0):
         raise ValueError(f"pixdim must be positive, got {out_d}")
     # compute output affine, shape and offset
     new_affine = zoom_affine(affine_, out_d, diagonal=self.diagonal)
     output_shape, offset = compute_shape_offset(data_array.shape[1:],
                                                 affine_, new_affine)
     new_affine[:sr, -1] = offset[:sr]
     transform = np.linalg.inv(affine_) @ new_affine
     # adapt to the actual rank
     transform_ = to_affine_nd(sr, transform)
     # resample
     dtype = data_array.dtype if self.dtype is None else self.dtype
     output_data = []
     for data in data_array:
         data_ = scipy.ndimage.affine_transform(
             data.astype(dtype),
             matrix=transform_,
             output_shape=output_shape,
             order=interp_order,
             mode=self.mode,
             cval=self.cval,
         )
         output_data.append(data_)
     output_data = np.stack(output_data)
     new_affine = to_affine_nd(affine, new_affine)
     return output_data, affine, new_affine
Exemplo n.º 3
0
 def test_diagonal(self, affine, scale, expected):
     output = zoom_affine(affine, scale, diagonal=True)
     np.testing.assert_allclose(output, expected, rtol=1e-6, atol=1e-6)