Exemplo n.º 1
0
    def test_nans_class(self, params, input_data, expected_value):

        dice_metric = DiceMetric(**params)
        dice_metric(**input_data)
        result, _ = dice_metric.aggregate()
        np.testing.assert_allclose(result.cpu().numpy(),
                                   expected_value,
                                   atol=1e-4)
def run_inference_test(root_dir, device="cuda:0"):
    images = sorted(glob(os.path.join(root_dir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz")))
    val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    val_transforms = Compose(
        [
            LoadImaged(keys=["img", "seg"]),
            EnsureChannelFirstd(keys=["img", "seg"]),
            # resampling with align_corners=True or dtype=float64 will generate
            # slight different results between PyTorch 1.5 an 1.6
            Spacingd(keys=["img", "seg"], pixdim=[1.2, 0.8, 0.7], mode=["bilinear", "nearest"], dtype=np.float32),
            ScaleIntensityd(keys="img"),
            ToTensord(keys=["img", "seg"]),
        ]
    )
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    # sliding window inference need to input 1 image in every iteration
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)
    val_post_tran = Compose([ToTensor(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
    dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)

    model = UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    model_filename = os.path.join(root_dir, "best_metric_model.pth")
    model.load_state_dict(torch.load(model_filename))
    with eval_mode(model):
        # resampling with align_corners=True or dtype=float64 will generate
        # slight different results between PyTorch 1.5 an 1.6
        saver = SaveImage(
            output_dir=os.path.join(root_dir, "output"),
            dtype=np.float32,
            output_ext=".nii.gz",
            output_postfix="seg",
            mode="bilinear",
        )
        for val_data in val_loader:
            val_images, val_labels = val_data["img"].to(device), val_data["seg"].to(device)
            # define sliding window size and batch size for windows inference
            sw_batch_size, roi_size = 4, (96, 96, 96)
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            # decollate prediction into a list
            val_outputs = [val_post_tran(i) for i in decollate_batch(val_outputs)]
            val_meta = decollate_batch(val_data[PostFix.meta("img")])
            # compute metrics
            dice_metric(y_pred=val_outputs, y=val_labels)
            for img, meta in zip(val_outputs, val_meta):  # save a decollated batch of files
                saver(img, meta)

    return dice_metric.aggregate().item()
Exemplo n.º 3
0
    def test_value_class(self, input_data, expected_value):

        # same test as for compute_meandice
        vals = {}
        vals["y_pred"] = input_data.pop("y_pred")
        vals["y"] = input_data.pop("y")
        dice_metric = DiceMetric(**input_data)
        dice_metric(**vals)
        result = dice_metric.aggregate(reduction="none")
        np.testing.assert_allclose(result.cpu().numpy(), expected_value, atol=1e-4)
Exemplo n.º 4
0
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_2d(128, 128, num_seg_classes=1)
        Image.fromarray((im * 255).astype("uint8")).save(os.path.join(tempdir, f"img{i:d}.png"))
        Image.fromarray((seg * 255).astype("uint8")).save(os.path.join(tempdir, f"seg{i:d}.png"))

    images = sorted(glob(os.path.join(tempdir, "img*.png")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.png")))

    # define transforms for image and segmentation
    imtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), EnsureType()])
    segtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), EnsureType()])
    val_ds = ArrayDataset(images, imtrans, segs, segtrans)
    # sliding window inference for one image at every iteration
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
    post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
    saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = UNet(
        spatial_dims=2,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    model.load_state_dict(torch.load("best_metric_model_segmentation2d_array.pth"))
    model.eval()
    with torch.no_grad():
        for val_data in val_loader:
            val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
            val_labels = decollate_batch(val_labels)
            # compute metric for current iteration
            dice_metric(y_pred=val_outputs, y=val_labels)
            for val_output in val_outputs:
                saver(val_output)
        # aggregate the final mean dice result
        print("evaluation metric:", dice_metric.aggregate().item())
        # reset the status
        dice_metric.reset()
                ]
                val_labels = [
                    post_label(i) for i in decollate_batch(val_labels)
                ]
                largest = KeepLargestConnectedComponent(applied_labels=[1])
                #value = compute_meandice(
                #    y_pred=val_outputs,
                #    y=val_labels,
                #    include_background=False,
                #)
                value = dice_metric(y_pred=val_outputs, y=val_labels)
                metric_count += len(value[0])
                metric_sum += value[0].sum().item()

            # aggregate the final mean dice result
            metric = dice_metric.aggregate().item()
            # reset the status for next validation round
            dice_metric.reset()
            #metric = metric_sum / metric_count
            metric_values.append(metric)
            scheduler.step(metric)  ##
            writer.add_scalar("val_mean_dice", metric, epoch + 1)  ##
            writer.add_scalar("Learning rate", optimizer.param_groups[0]['lr'],
                              epoch + 1)

            if metric > best_metric:
                best_metric = metric
                best_metric_epoch = epoch + 1
                torch.save(model.state_dict(),
                           os.path.join(out_dir, "best_metric_model.pth"))
                print("saved new best metric model")
Exemplo n.º 6
0
def evaluate(args):
    # initialize Horovod library
    hvd.init()
    # Horovod limits CPU threads to be used per worker
    torch.set_num_threads(1)

    if hvd.local_rank() == 0 and not os.path.exists(args.dir):
        # create 16 random image, mask paris for evaluation
        print(f"generating synthetic data to {args.dir} (this may take a while)")
        os.makedirs(args.dir)
        # set random seed to generate same random data for every node
        np.random.seed(seed=0)
        for i in range(16):
            im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
            n = nib.Nifti1Image(im, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"img{i:d}.nii.gz"))
            n = nib.Nifti1Image(seg, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(args.dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(args.dir, "seg*.nii.gz")))
    val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    val_transforms = Compose(
        [
            LoadImaged(keys=["img", "seg"]),
            AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
            ScaleIntensityd(keys="img"),
            EnsureTyped(keys=["img", "seg"]),
        ]
    )

    # create a evaluation data loader
    val_ds = Dataset(data=val_files, transform=val_transforms)
    # create a evaluation data sampler
    val_sampler = DistributedSampler(val_ds, shuffle=False, num_replicas=hvd.size(), rank=hvd.rank())
    # when supported, use "forkserver" to spawn dataloader workers instead of "fork" to prevent
    # issues with Infiniband implementations that are not fork-safe
    multiprocessing_context = None
    if hasattr(mp, "_supports_context") and mp._supports_context and "forkserver" in mp.get_all_start_methods():
        multiprocessing_context = "forkserver"
    # sliding window inference need to input 1 image in every iteration
    val_loader = DataLoader(
        val_ds,
        batch_size=1,
        shuffle=False,
        num_workers=2,
        pin_memory=True,
        sampler=val_sampler,
        multiprocessing_context=multiprocessing_context,
    )
    dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
    post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device(f"cuda:{hvd.local_rank()}")
    torch.cuda.set_device(device)
    model = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    if hvd.rank() == 0:
        # load model parameters for evaluation
        model.load_state_dict(torch.load("final_model.pth"))
    # Horovod broadcasts parameters
    hvd.broadcast_parameters(model.state_dict(), root_rank=0)

    model.eval()
    with torch.no_grad():
        for val_data in val_loader:
            val_images, val_labels = val_data["img"].to(device), val_data["seg"].to(device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
            dice_metric(y_pred=val_outputs, y=val_labels)

        metric = dice_metric.aggregate().item()
        dice_metric.reset()

        if hvd.rank() == 0:
            print("evaluation metric:", metric)
Exemplo n.º 7
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_2d(128, 128, num_seg_classes=1)
        Image.fromarray((im * 255).astype("uint8")).save(
            os.path.join(tempdir, f"img{i:d}.png"))
        Image.fromarray((seg * 255).astype("uint8")).save(
            os.path.join(tempdir, f"seg{i:d}.png"))

    images = sorted(glob(os.path.join(tempdir, "img*.png")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.png")))

    # define transforms for image and segmentation
    train_imtrans = Compose([
        LoadImage(image_only=True),
        AddChannel(),
        ScaleIntensity(),
        RandSpatialCrop((96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 1)),
        EnsureType(),
    ])
    train_segtrans = Compose([
        LoadImage(image_only=True),
        AddChannel(),
        ScaleIntensity(),
        RandSpatialCrop((96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 1)),
        EnsureType(),
    ])
    val_imtrans = Compose([
        LoadImage(image_only=True),
        AddChannel(),
        ScaleIntensity(),
        EnsureType()
    ])
    val_segtrans = Compose([
        LoadImage(image_only=True),
        AddChannel(),
        ScaleIntensity(),
        EnsureType()
    ])

    # define array dataset, data loader
    check_ds = ArrayDataset(images, train_imtrans, segs, train_segtrans)
    check_loader = DataLoader(check_ds,
                              batch_size=10,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = ArrayDataset(images[:20], train_imtrans, segs[:20],
                            train_segtrans)
    train_loader = DataLoader(train_ds,
                              batch_size=4,
                              shuffle=True,
                              num_workers=8,
                              pin_memory=torch.cuda.is_available())
    # create a validation data loader
    val_ds = ArrayDataset(images[-20:], val_imtrans, segs[-20:], val_segtrans)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=4,
                            pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True,
                             reduction="mean",
                             get_not_nans=False)
    post_trans = Compose(
        [EnsureType(),
         Activations(sigmoid=True),
         AsDiscrete(threshold=0.5)])
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = monai.networks.nets.UNet(
        spatial_dims=2,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss_function = monai.losses.DiceLoss(sigmoid=True)
    optimizer = torch.optim.Adam(model.parameters(), 1e-3)

    # start a typical PyTorch training
    val_interval = 2
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    writer = SummaryWriter()
    for epoch in range(10):
        print("-" * 10)
        print(f"epoch {epoch + 1}/{10}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
            writer.add_scalar("train_loss", loss.item(),
                              epoch_len * epoch + step)
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                val_images = None
                val_labels = None
                val_outputs = None
                for val_data in val_loader:
                    val_images, val_labels = val_data[0].to(
                        device), val_data[1].to(device)
                    roi_size = (96, 96)
                    sw_batch_size = 4
                    val_outputs = sliding_window_inference(
                        val_images, roi_size, sw_batch_size, model)
                    val_outputs = [
                        post_trans(i) for i in decollate_batch(val_outputs)
                    ]
                    # compute metric for current iteration
                    dice_metric(y_pred=val_outputs, y=val_labels)
                # aggregate the final mean dice result
                metric = dice_metric.aggregate().item()
                # reset the status for next validation round
                dice_metric.reset()
                metric_values.append(metric)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(),
                               "best_metric_model_segmentation2d_array.pth")
                    print("saved new best metric model")
                print(
                    "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}"
                    .format(epoch + 1, metric, best_metric, best_metric_epoch))
                writer.add_scalar("val_mean_dice", metric, epoch + 1)
                # plot the last model output as GIF image in TensorBoard with the corresponding image and label
                plot_2d_or_3d_image(val_images,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="image")
                plot_2d_or_3d_image(val_labels,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="label")
                plot_2d_or_3d_image(val_outputs,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="output")

    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )
    writer.close()
    def test_train_timing(self):
        images = sorted(glob(os.path.join(self.data_dir, "img*.nii.gz")))
        segs = sorted(glob(os.path.join(self.data_dir, "seg*.nii.gz")))
        train_files = [{
            "image": img,
            "label": seg
        } for img, seg in zip(images[:32], segs[:32])]
        val_files = [{
            "image": img,
            "label": seg
        } for img, seg in zip(images[-9:], segs[-9:])]

        device = torch.device("cuda:0")
        # define transforms for train and validation
        train_transforms = Compose([
            LoadImaged(keys=["image", "label"]),
            EnsureChannelFirstd(keys=["image", "label"]),
            Spacingd(keys=["image", "label"],
                     pixdim=(1.0, 1.0, 1.0),
                     mode=("bilinear", "nearest")),
            ScaleIntensityd(keys="image"),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            # pre-compute foreground and background indexes
            # and cache them to accelerate training
            FgBgToIndicesd(keys="label", fg_postfix="_fg", bg_postfix="_bg"),
            # change to execute transforms with Tensor data
            EnsureTyped(keys=["image", "label"]),
            # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch
            ToDeviced(keys=["image", "label"], device=device),
            # randomly crop out patch samples from big
            # image based on pos / neg ratio
            # the image centers of negative samples
            # must be in valid image area
            RandCropByPosNegLabeld(
                keys=["image", "label"],
                label_key="label",
                spatial_size=(64, 64, 64),
                pos=1,
                neg=1,
                num_samples=4,
                fg_indices_key="label_fg",
                bg_indices_key="label_bg",
            ),
            RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=[1, 2]),
            RandAxisFlipd(keys=["image", "label"], prob=0.5),
            RandRotate90d(keys=["image", "label"],
                          prob=0.5,
                          spatial_axes=(1, 2)),
            RandZoomd(keys=["image", "label"],
                      prob=0.5,
                      min_zoom=0.8,
                      max_zoom=1.2,
                      keep_size=True),
            RandRotated(
                keys=["image", "label"],
                prob=0.5,
                range_x=np.pi / 4,
                mode=("bilinear", "nearest"),
                align_corners=True,
                dtype=np.float64,
            ),
            RandAffined(keys=["image", "label"],
                        prob=0.5,
                        rotate_range=np.pi / 2,
                        mode=("bilinear", "nearest")),
            RandGaussianNoised(keys="image", prob=0.5),
            RandStdShiftIntensityd(keys="image",
                                   prob=0.5,
                                   factors=0.05,
                                   nonzero=True),
        ])

        val_transforms = Compose([
            LoadImaged(keys=["image", "label"]),
            EnsureChannelFirstd(keys=["image", "label"]),
            Spacingd(keys=["image", "label"],
                     pixdim=(1.0, 1.0, 1.0),
                     mode=("bilinear", "nearest")),
            ScaleIntensityd(keys="image"),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            EnsureTyped(keys=["image", "label"]),
            # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch
            ToDeviced(keys=["image", "label"], device=device),
        ])

        max_epochs = 5
        learning_rate = 2e-4
        val_interval = 1  # do validation for every epoch

        # set CacheDataset, ThreadDataLoader and DiceCE loss for MONAI fast training
        train_ds = CacheDataset(data=train_files,
                                transform=train_transforms,
                                cache_rate=1.0,
                                num_workers=8)
        val_ds = CacheDataset(data=val_files,
                              transform=val_transforms,
                              cache_rate=1.0,
                              num_workers=5)
        # disable multi-workers because `ThreadDataLoader` works with multi-threads
        train_loader = ThreadDataLoader(train_ds,
                                        num_workers=0,
                                        batch_size=4,
                                        shuffle=True)
        val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1)

        loss_function = DiceCELoss(to_onehot_y=True,
                                   softmax=True,
                                   squared_pred=True,
                                   batch=True)
        model = UNet(
            spatial_dims=3,
            in_channels=1,
            out_channels=2,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
            norm=Norm.BATCH,
        ).to(device)

        # Novograd paper suggests to use a bigger LR than Adam,
        # because Adam does normalization by element-wise second moments
        optimizer = Novograd(model.parameters(), learning_rate * 10)
        scaler = torch.cuda.amp.GradScaler()

        post_pred = Compose(
            [EnsureType(), AsDiscrete(argmax=True, to_onehot=2)])
        post_label = Compose([EnsureType(), AsDiscrete(to_onehot=2)])

        dice_metric = DiceMetric(include_background=True,
                                 reduction="mean",
                                 get_not_nans=False)

        best_metric = -1
        total_start = time.time()
        for epoch in range(max_epochs):
            epoch_start = time.time()
            print("-" * 10)
            print(f"epoch {epoch + 1}/{max_epochs}")
            model.train()
            epoch_loss = 0
            step = 0
            for batch_data in train_loader:
                step_start = time.time()
                step += 1
                optimizer.zero_grad()
                # set AMP for training
                with torch.cuda.amp.autocast():
                    outputs = model(batch_data["image"])
                    loss = loss_function(outputs, batch_data["label"])
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
                epoch_loss += loss.item()
                epoch_len = math.ceil(len(train_ds) / train_loader.batch_size)
                print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}"
                      f" step time: {(time.time() - step_start):.4f}")
            epoch_loss /= step
            print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

            if (epoch + 1) % val_interval == 0:
                model.eval()
                with torch.no_grad():
                    for val_data in val_loader:
                        roi_size = (96, 96, 96)
                        sw_batch_size = 4
                        # set AMP for validation
                        with torch.cuda.amp.autocast():
                            val_outputs = sliding_window_inference(
                                val_data["image"], roi_size, sw_batch_size,
                                model)

                        val_outputs = [
                            post_pred(i) for i in decollate_batch(val_outputs)
                        ]
                        val_labels = [
                            post_label(i)
                            for i in decollate_batch(val_data["label"])
                        ]
                        dice_metric(y_pred=val_outputs, y=val_labels)

                    metric = dice_metric.aggregate().item()
                    dice_metric.reset()
                    if metric > best_metric:
                        best_metric = metric
                    print(
                        f"epoch: {epoch + 1} current mean dice: {metric:.4f}, best mean dice: {best_metric:.4f}"
                    )
            print(
                f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}"
            )

        total_time = time.time() - total_start
        print(
            f"train completed, best_metric: {best_metric:.4f} total time: {total_time:.4f}"
        )
        # test expected metrics
        self.assertGreater(best_metric, 0.95)
Exemplo n.º 9
0
def evaluate(args):
    if args.local_rank == 0 and not os.path.exists(args.dir):
        # create 16 random image, mask paris for evaluation
        print(
            f"generating synthetic data to {args.dir} (this may take a while)")
        os.makedirs(args.dir)
        # set random seed to generate same random data for every node
        np.random.seed(seed=0)
        for i in range(16):
            im, seg = create_test_image_3d(128,
                                           128,
                                           128,
                                           num_seg_classes=1,
                                           channel_dim=-1)
            n = nib.Nifti1Image(im, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"img{i:d}.nii.gz"))
            n = nib.Nifti1Image(seg, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"seg{i:d}.nii.gz"))

    # initialize the distributed evaluation process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")

    images = sorted(glob(os.path.join(args.dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(args.dir, "seg*.nii.gz")))
    val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    val_transforms = Compose([
        LoadImaged(keys=["img", "seg"]),
        AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
        ScaleIntensityd(keys="img"),
        EnsureTyped(keys=["img", "seg"]),
    ])

    # create a evaluation data loader
    val_ds = Dataset(data=val_files, transform=val_transforms)
    # create a evaluation data sampler
    val_sampler = DistributedSampler(dataset=val_ds,
                                     even_divisible=False,
                                     shuffle=False)
    # sliding window inference need to input 1 image in every iteration
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            shuffle=False,
                            num_workers=2,
                            pin_memory=True,
                            sampler=val_sampler)
    dice_metric = DiceMetric(include_background=True,
                             reduction="mean",
                             get_not_nans=False)
    post_trans = Compose(
        [EnsureType(),
         Activations(sigmoid=True),
         AsDiscrete(threshold=0.5)])
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device(f"cuda:{args.local_rank}")
    torch.cuda.set_device(device)
    model = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    # wrap the model with DistributedDataParallel module
    model = DistributedDataParallel(model, device_ids=[device])
    # config mapping to expected GPU device
    map_location = {"cuda:0": f"cuda:{args.local_rank}"}
    # load model parameters to GPU device
    model.load_state_dict(
        torch.load("final_model.pth", map_location=map_location))

    model.eval()
    with torch.no_grad():
        for val_data in val_loader:
            val_images, val_labels = val_data["img"].to(
                device), val_data["seg"].to(device)
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size,
                                                   sw_batch_size, model)
            val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]

            dice_metric(y_pred=val_outputs, y=val_labels)

        metric = dice_metric.aggregate().item()
        dice_metric.reset()

        if dist.get_rank() == 0:
            print("evaluation metric:", metric)
        dist.destroy_process_group()
Exemplo n.º 10
0
def segment(image, label, result, weights, resolution, patch_size, network,
            gpu_ids):

    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    if label is not None:
        uniform_img_dimensions_internal(image, label, True)
        files = [{"image": image, "label": label}]
    else:
        files = [{"image": image}]

    # original size, size after crop_background, cropped roi coordinates, cropped resampled roi size
    original_shape, crop_shape, coord1, coord2, resampled_size, original_resolution = statistics_crop(
        image, resolution)

    # -------------------------------

    if label is not None:
        if resolution is not None:

            val_transforms = Compose([
                LoadImaged(keys=['image', 'label']),
                AddChanneld(keys=['image', 'label']),
                # ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135),  # Threshold CT
                # ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
                CropForegroundd(keys=['image', 'label'],
                                source_key='image'),  # crop CropForeground
                NormalizeIntensityd(keys=['image']),  # intensity
                ScaleIntensityd(keys=['image']),
                Spacingd(keys=['image', 'label'],
                         pixdim=resolution,
                         mode=('bilinear', 'nearest')),  # resolution
                SpatialPadd(keys=['image', 'label'],
                            spatial_size=patch_size,
                            method='end'),
                ToTensord(keys=['image', 'label'])
            ])
        else:

            val_transforms = Compose([
                LoadImaged(keys=['image', 'label']),
                AddChanneld(keys=['image', 'label']),
                # ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135),  # Threshold CT
                # ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
                CropForegroundd(keys=['image', 'label'],
                                source_key='image'),  # crop CropForeground
                NormalizeIntensityd(keys=['image']),  # intensity
                ScaleIntensityd(keys=['image']),
                SpatialPadd(
                    keys=['image', 'label'],
                    spatial_size=patch_size,
                    method='end'),  # pad if the image is smaller than patch
                ToTensord(keys=['image', 'label'])
            ])

    else:
        if resolution is not None:

            val_transforms = Compose([
                LoadImaged(keys=['image']),
                AddChanneld(keys=['image']),
                # ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135),  # Threshold CT
                # ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
                CropForegroundd(keys=['image'],
                                source_key='image'),  # crop CropForeground
                NormalizeIntensityd(keys=['image']),  # intensity
                ScaleIntensityd(keys=['image']),
                Spacingd(keys=['image'], pixdim=resolution,
                         mode=('bilinear')),  # resolution
                SpatialPadd(
                    keys=['image'], spatial_size=patch_size,
                    method='end'),  # pad if the image is smaller than patch
                ToTensord(keys=['image'])
            ])
        else:

            val_transforms = Compose([
                LoadImaged(keys=['image']),
                AddChanneld(keys=['image']),
                # ThresholdIntensityd(keys=['image'], threshold=-135, above=True, cval=-135),  # Threshold CT
                # ThresholdIntensityd(keys=['image'], threshold=215, above=False, cval=215),
                CropForegroundd(keys=['image'],
                                source_key='image'),  # crop CropForeground
                NormalizeIntensityd(keys=['image']),  # intensity
                ScaleIntensityd(keys=['image']),
                SpatialPadd(
                    keys=['image'], spatial_size=patch_size,
                    method='end'),  # pad if the image is smaller than patch
                ToTensord(keys=['image'])
            ])

    val_ds = monai.data.Dataset(data=files, transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=0,
                            collate_fn=list_data_collate,
                            pin_memory=False)

    dice_metric = DiceMetric(include_background=True,
                             reduction="mean",
                             get_not_nans=False)
    post_trans = Compose([
        EnsureType(),
        Activations(sigmoid=True),
        AsDiscrete(threshold_values=True)
    ])

    if gpu_ids != '-1':

        # try to use all the available GPUs
        os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    else:
        device = torch.device("cpu")

    # build the network
    if network == 'nnunet':
        net = build_net()  # nn build_net
    elif network == 'unetr':
        net = build_UNETR()  # UneTR

    net = net.to(device)

    if gpu_ids == '-1':

        net.load_state_dict(new_state_dict_cpu(weights))

    else:

        net.load_state_dict(new_state_dict(weights))

    # define sliding window size and batch size for windows inference
    roi_size = patch_size
    sw_batch_size = 4

    net.eval()
    with torch.no_grad():

        if label is None:
            for val_data in val_loader:
                val_images = val_data["image"].to(device)
                val_outputs = sliding_window_inference(val_images, roi_size,
                                                       sw_batch_size, net)
                val_outputs = [
                    post_trans(i) for i in decollate_batch(val_outputs)
                ]

        else:
            for val_data in val_loader:
                val_images, val_labels = val_data["image"].to(
                    device), val_data["label"].to(device)
                val_outputs = sliding_window_inference(val_images, roi_size,
                                                       sw_batch_size, net)
                val_outputs = [
                    post_trans(i) for i in decollate_batch(val_outputs)
                ]
                dice_metric(y_pred=val_outputs, y=val_labels)

            metric = dice_metric.aggregate().item()
            print("Evaluation Metric (Dice):", metric)

        result_array = val_outputs[0].squeeze().data.cpu().numpy()
        # Remove the pad if the image was smaller than the patch in some directions
        result_array = result_array[0:resampled_size[0], 0:resampled_size[1],
                                    0:resampled_size[2]]

        # resample back to the original resolution
        if resolution is not None:

            result_array_np = np.transpose(result_array, (2, 1, 0))
            result_array_temp = sitk.GetImageFromArray(result_array_np)
            result_array_temp.SetSpacing(resolution)

            # save temporary label
            writer = sitk.ImageFileWriter()
            writer.SetFileName('temp_seg.nii')
            writer.Execute(result_array_temp)

            files = [{"image": 'temp_seg.nii'}]

            files_transforms = Compose([
                LoadImaged(keys=['image']),
                AddChanneld(keys=['image']),
                Spacingd(keys=['image'],
                         pixdim=original_resolution,
                         mode=('nearest')),
                Resized(keys=['image'],
                        spatial_size=crop_shape,
                        mode=('nearest')),
            ])

            files_ds = Dataset(data=files, transform=files_transforms)
            files_loader = DataLoader(files_ds, batch_size=1, num_workers=0)

            for files_data in files_loader:
                files_images = files_data["image"]

                res = files_images.squeeze().data.numpy()

            result_array = np.rint(res)

            os.remove('./temp_seg.nii')

        # recover the cropped background before saving the image
        empty_array = np.zeros(original_shape)
        empty_array[coord1[0]:coord2[0], coord1[1]:coord2[1],
                    coord1[2]:coord2[2]] = result_array

        result_seg = from_numpy_to_itk(empty_array, image)

        # save label
        writer = sitk.ImageFileWriter()
        writer.SetFileName(result)
        writer.Execute(result_seg)
        print("Saved Result at:", str(result))
Exemplo n.º 11
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128,
                                       128,
                                       128,
                                       num_seg_classes=1,
                                       channel_dim=-1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    train_files = [{
        "img": img,
        "seg": seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        "img": img,
        "seg": seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadImaged(keys=["img", "seg"]),
        AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
        ScaleIntensityd(keys="img"),
        RandCropByPosNegLabeld(keys=["img", "seg"],
                               label_key="seg",
                               spatial_size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=["img", "seg"], prob=0.5, spatial_axes=[0, 2]),
        EnsureTyped(keys=["img", "seg"]),
    ])
    val_transforms = Compose([
        LoadImaged(keys=["img", "seg"]),
        AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
        ScaleIntensityd(keys="img"),
        EnsureTyped(keys=["img", "seg"]),
    ])

    # define dataset, data loader
    check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    check_loader = DataLoader(check_ds,
                              batch_size=2,
                              num_workers=4,
                              collate_fn=list_data_collate)
    check_data = monai.utils.misc.first(check_loader)
    print(check_data["img"].shape, check_data["seg"].shape)

    # create a training data loader
    train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = DataLoader(
        train_ds,
        batch_size=2,
        shuffle=True,
        num_workers=4,
        collate_fn=list_data_collate,
        pin_memory=torch.cuda.is_available(),
    )
    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=4,
                            collate_fn=list_data_collate)
    dice_metric = DiceMetric(include_background=True,
                             reduction="mean",
                             get_not_nans=False)
    post_trans = Compose(
        [EnsureType(),
         Activations(sigmoid=True),
         AsDiscrete(threshold=0.5)])
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss_function = monai.losses.DiceLoss(sigmoid=True)
    optimizer = torch.optim.Adam(model.parameters(), 1e-3)

    # start a typical PyTorch training
    val_interval = 2
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    writer = SummaryWriter()
    for epoch in range(5):
        print("-" * 10)
        print(f"epoch {epoch + 1}/{5}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data["img"].to(
                device), batch_data["seg"].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
            writer.add_scalar("train_loss", loss.item(),
                              epoch_len * epoch + step)
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                val_images = None
                val_labels = None
                val_outputs = None
                for val_data in val_loader:
                    val_images, val_labels = val_data["img"].to(
                        device), val_data["seg"].to(device)
                    roi_size = (96, 96, 96)
                    sw_batch_size = 4
                    val_outputs = sliding_window_inference(
                        val_images, roi_size, sw_batch_size, model)
                    val_outputs = [
                        post_trans(i) for i in decollate_batch(val_outputs)
                    ]
                    # compute metric for current iteration
                    dice_metric(y_pred=val_outputs, y=val_labels)
                # aggregate the final mean dice result
                metric = dice_metric.aggregate().item()
                # reset the status for next validation round
                dice_metric.reset()

                metric_values.append(metric)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(),
                               "best_metric_model_segmentation3d_dict.pth")
                    print("saved new best metric model")
                print(
                    "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}"
                    .format(epoch + 1, metric, best_metric, best_metric_epoch))
                writer.add_scalar("val_mean_dice", metric, epoch + 1)
                # plot the last model output as GIF image in TensorBoard with the corresponding image and label
                plot_2d_or_3d_image(val_images,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="image")
                plot_2d_or_3d_image(val_labels,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="label")
                plot_2d_or_3d_image(val_outputs,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="output")

    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )
    writer.close()
Exemplo n.º 12
0
def compute(args):
    # generate synthetic data for the example
    if args.local_rank == 0 and not os.path.exists(args.dir):
        # create 16 random pred, label paris for evaluation
        print(
            f"generating synthetic data to {args.dir} (this may take a while)")
        os.makedirs(args.dir)
        # if have multiple nodes, set random seed to generate same random data for every node
        np.random.seed(seed=0)
        for i in range(16):
            pred, label = create_test_image_3d(128,
                                               128,
                                               128,
                                               num_seg_classes=1,
                                               channel_dim=-1,
                                               noise_max=0.5)
            n = nib.Nifti1Image(pred, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"pred{i:d}.nii.gz"))
            n = nib.Nifti1Image(label, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"label{i:d}.nii.gz"))

    # initialize the distributed evaluation process, change to NCCL backend if computing on GPU
    dist.init_process_group(backend="gloo", init_method="env://")

    preds = sorted(glob(os.path.join(args.dir, "pred*.nii.gz")))
    labels = sorted(glob(os.path.join(args.dir, "label*.nii.gz")))
    datalist = [{
        "pred": pred,
        "label": label
    } for pred, label in zip(preds, labels)]

    # split data for every subprocess, for example, 16 processes compute in parallel
    data_part = partition_dataset(
        data=datalist,
        num_partitions=dist.get_world_size(),
        shuffle=False,
        even_divisible=False,
    )[dist.get_rank()]

    # define transforms for predictions and labels
    transforms = Compose([
        LoadImaged(keys=["pred", "label"]),
        EnsureChannelFirstd(keys=["pred", "label"]),
        ScaleIntensityd(keys="pred"),
        EnsureTyped(keys=["pred", "label"]),
        AsDiscreted(keys="pred", threshold=0.5),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    data_part = [transforms(item) for item in data_part]

    # compute metrics for current process
    metric = DiceMetric(include_background=True,
                        reduction="mean",
                        get_not_nans=False)
    metric(y_pred=[i["pred"] for i in data_part],
           y=[i["label"] for i in data_part])
    filenames = [
        item["pred_meta_dict"]["filename_or_obj"] for item in data_part
    ]
    # all-gather results from all the processes and reduce for final result
    result = metric.aggregate().item()
    filenames = string_list_all_gather(strings=filenames)

    if args.local_rank == 0:
        print("mean dice: ", result)
        # generate metrics reports at: output/mean_dice_raw.csv, output/mean_dice_summary.csv, output/metrics.csv
        write_metrics_reports(
            save_dir="./output",
            images=filenames,
            metrics={"mean_dice": result},
            metric_details={"mean_dice": metric.get_buffer()},
            summary_ops="*",
        )

    metric.reset()

    dist.destroy_process_group()
Exemplo n.º 13
0
def run_training_test(root_dir,
                      device="cuda:0",
                      cachedataset=0,
                      readers=(None, None)):
    monai.config.print_config()
    images = sorted(glob(os.path.join(root_dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz")))
    train_files = [{
        "img": img,
        "seg": seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        "img": img,
        "seg": seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadImaged(keys=["img", "seg"], reader=readers[0]),
        EnsureChannelFirstd(keys=["img", "seg"]),
        # resampling with align_corners=True or dtype=float64 will generate
        # slight different results between PyTorch 1.5 an 1.6
        Spacingd(keys=["img", "seg"],
                 pixdim=[1.2, 0.8, 0.7],
                 mode=["bilinear", "nearest"],
                 dtype=np.float32),
        ScaleIntensityd(keys="img"),
        RandCropByPosNegLabeld(keys=["img", "seg"],
                               label_key="seg",
                               spatial_size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=["img", "seg"], prob=0.8, spatial_axes=[0, 2]),
        ToTensord(keys=["img", "seg"]),
    ])
    train_transforms.set_random_state(1234)
    val_transforms = Compose([
        LoadImaged(keys=["img", "seg"], reader=readers[1]),
        EnsureChannelFirstd(keys=["img", "seg"]),
        # resampling with align_corners=True or dtype=float64 will generate
        # slight different results between PyTorch 1.5 an 1.6
        Spacingd(keys=["img", "seg"],
                 pixdim=[1.2, 0.8, 0.7],
                 mode=["bilinear", "nearest"],
                 dtype=np.float32),
        ScaleIntensityd(keys="img"),
        ToTensord(keys=["img", "seg"]),
    ])

    # create a training data loader
    if cachedataset == 2:
        train_ds = monai.data.CacheDataset(data=train_files,
                                           transform=train_transforms,
                                           cache_rate=0.8)
    elif cachedataset == 3:
        train_ds = monai.data.LMDBDataset(data=train_files,
                                          transform=train_transforms,
                                          cache_dir=root_dir)
    else:
        train_ds = monai.data.Dataset(data=train_files,
                                      transform=train_transforms)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=2,
                                         shuffle=True,
                                         num_workers=4)
    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)
    val_post_tran = Compose([
        ToTensor(),
        Activations(sigmoid=True),
        AsDiscrete(threshold_values=True)
    ])
    dice_metric = DiceMetric(include_background=True,
                             reduction="mean",
                             get_not_nans=False)

    # create UNet, DiceLoss and Adam optimizer
    model = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss_function = monai.losses.DiceLoss(sigmoid=True)
    optimizer = torch.optim.Adam(model.parameters(), 5e-4)

    # start a typical PyTorch training
    val_interval = 2
    best_metric, best_metric_epoch = -1, -1
    epoch_loss_values = []
    metric_values = []
    writer = SummaryWriter(log_dir=os.path.join(root_dir, "runs"))
    model_filename = os.path.join(root_dir, "best_metric_model.pth")
    for epoch in range(6):
        print("-" * 10)
        print(f"Epoch {epoch + 1}/{6}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data["img"].to(
                device), batch_data["seg"].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print(f"{step}/{epoch_len}, train_loss:{loss.item():0.4f}")
            writer.add_scalar("train_loss", loss.item(),
                              epoch_len * epoch + step)
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch +1} average loss:{epoch_loss:0.4f}")

        if (epoch + 1) % val_interval == 0:
            with eval_mode(model):
                val_images = None
                val_labels = None
                val_outputs = None
                for val_data in val_loader:
                    val_images, val_labels = val_data["img"].to(
                        device), val_data["seg"].to(device)
                    sw_batch_size, roi_size = 4, (96, 96, 96)
                    val_outputs = sliding_window_inference(
                        val_images, roi_size, sw_batch_size, model)
                    # decollate prediction into a list and execute post processing for every item
                    val_outputs = [
                        val_post_tran(i) for i in decollate_batch(val_outputs)
                    ]
                    # compute metrics
                    dice_metric(y_pred=val_outputs, y=val_labels)

                metric = dice_metric.aggregate().item()
                dice_metric.reset()
                metric_values.append(metric)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(), model_filename)
                    print("saved new best metric model")
                print(
                    f"current epoch {epoch +1} current mean dice: {metric:0.4f} "
                    f"best mean dice: {best_metric:0.4f} at epoch {best_metric_epoch}"
                )
                writer.add_scalar("val_mean_dice", metric, epoch + 1)
                # plot the last model output as GIF image in TensorBoard with the corresponding image and label
                plot_2d_or_3d_image(val_images,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="image")
                plot_2d_or_3d_image(val_labels,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="label")
                plot_2d_or_3d_image(val_outputs,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="output")
    print(
        f"train completed, best_metric: {best_metric:0.4f}  at epoch: {best_metric_epoch}"
    )
    writer.close()
    return epoch_loss_values, best_metric, best_metric_epoch
Exemplo n.º 14
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    val_transforms = Compose(
        [
            LoadImaged(keys=["img", "seg"]),
            AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
            ScaleIntensityd(keys="img"),
            EnsureTyped(keys=["img", "seg"]),
        ]
    )
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    # sliding window inference need to input 1 image in every iteration
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate)
    dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
    post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
    saver = SaveImage(output_dir="./output", output_ext=".nii.gz", output_postfix="seg")
    # try to use all the available GPUs
    devices = [torch.device("cuda" if torch.cuda.is_available() else "cpu")]
    #devices = get_devices_spec(None)
    model = UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(devices[0])

    model.load_state_dict(torch.load("best_metric_model_segmentation3d_dict.pth"))

    # if we have multiple GPUs, set data parallel to execute sliding window inference
    if len(devices) > 1:
        model = torch.nn.DataParallel(model, device_ids=devices)

    model.eval()
    with torch.no_grad():
        for val_data in val_loader:
            val_images, val_labels = val_data["img"].to(devices[0]), val_data["seg"].to(devices[0])
            # define sliding window size and batch size for windows inference
            roi_size = (96, 96, 96)
            sw_batch_size = 4
            val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
            val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
            val_labels = decollate_batch(val_labels)
            meta_data = decollate_batch(val_data["img_meta_dict"])
            # compute metric for current iteration
            dice_metric(y_pred=val_outputs, y=val_labels)
            for val_output, data in zip(val_outputs, meta_data):
                saver(val_output, data)
        # aggregate the final mean dice result
        print("evaluation metric:", dice_metric.aggregate().item())
        # reset the status
        dice_metric.reset()