Exemplo n.º 1
0
    def __init__(
        self,
        output_dir: str = "./",
        output_postfix: str = "seg",
        output_ext: str = ".png",
        resample: bool = True,
        mode: Union[InterpolateMode, str] = InterpolateMode.NEAREST,
        scale: Optional[int] = None,
    ) -> None:
        """
        Args:
            output_dir: output image directory.
            output_postfix: a string appended to all output file names.
            output_ext: output file extension name.
            resample: whether to resample and resize if providing spatial_shape in the metadata.
            mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
                The interpolation mode. Defaults to ``"nearest"``.
                See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
            scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling
                [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling.

        """
        self.output_dir = output_dir
        self.output_postfix = output_postfix
        self.output_ext = output_ext
        self.resample = resample
        self.mode: InterpolateMode = InterpolateMode(mode)
        self.scale = scale

        self._data_index = 0
Exemplo n.º 2
0
def write_png(
    data: np.ndarray,
    file_name: str,
    output_spatial_shape: Optional[Sequence[int]] = None,
    mode: Union[InterpolateMode, str] = InterpolateMode.BICUBIC,
    scale: Optional[int] = None,
) -> None:
    """
    Write numpy data into png files to disk.
    Spatially it supports HW for 2D.(H,W) or (H,W,3) or (H,W,4).
    If `scale` is None, expect the input data in `np.uint8` or `np.uint16` type.
    It's based on the Image module in PIL library:
    https://pillow.readthedocs.io/en/stable/reference/Image.html

    Args:
        data: input data to write to file.
        file_name: expected file name that saved on disk.
        output_spatial_shape: spatial shape of the output image.
        mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
            The interpolation mode. Defaults to ``"bicubic"``.
            See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
        scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling to
            [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling.

    Raises:
        ValueError: When ``scale`` is not one of [255, 65535].

    """
    if not isinstance(data, np.ndarray):
        raise AssertionError("input data must be numpy array.")
    if len(data.shape) == 3 and data.shape[2] == 1:  # PIL Image can't save image with 1 channel
        data = data.squeeze(2)
    if output_spatial_shape is not None:
        output_spatial_shape_ = ensure_tuple_rep(output_spatial_shape, 2)
        mode = InterpolateMode(mode)
        align_corners = None if mode in (InterpolateMode.NEAREST, InterpolateMode.AREA) else False
        xform = Resize(spatial_size=output_spatial_shape_, mode=mode, align_corners=align_corners)
        _min, _max = np.min(data), np.max(data)
        if len(data.shape) == 3:
            data = np.moveaxis(data, -1, 0)  # to channel first
            data = xform(data)
            data = np.moveaxis(data, 0, -1)
        else:  # (H, W)
            data = np.expand_dims(data, 0)  # make a channel
            data = xform(data)[0]  # first channel
        if mode != InterpolateMode.NEAREST:
            data = np.clip(data, _min, _max)  # type: ignore

    if scale is not None:
        data = np.clip(data, 0.0, 1.0)  # type: ignore # png writer only can scale data in range [0, 1]
        if scale == np.iinfo(np.uint8).max:
            data = (scale * data).astype(np.uint8)
        elif scale == np.iinfo(np.uint16).max:
            data = (scale * data).astype(np.uint16)
        else:
            raise ValueError(f"Unsupported scale: {scale}, available options are [255, 65535]")

    img = Image.fromarray(data)
    img.save(file_name, "PNG")
    return
Exemplo n.º 3
0
 def __init__(
     self,
     spatial_size: Union[Sequence[int], int],
     mode: Union[InterpolateMode, str] = InterpolateMode.AREA,
     align_corners: Optional[bool] = None,
 ) -> None:
     self.spatial_size = spatial_size
     self.mode: InterpolateMode = InterpolateMode(mode)
     self.align_corners = align_corners
Exemplo n.º 4
0
    def __call__(
        self,
        img: np.ndarray,
        mode: Optional[Union[InterpolateMode, str]] = None,
        align_corners: Optional[bool] = None,
    ) -> np.ndarray:
        """
        Args:
            img: channel first array, must have shape: (num_channels, H[, W, ..., ]).
            mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
                The interpolation mode. Defaults to ``self.mode``.
            align_corners: This only has an effect when mode is
                'linear', 'bilinear', 'bicubic' or 'trilinear'. Defaults to ``self.align_corners``.

        Raises:
            ValueError: When ``self.spatial_size`` length is less than ``img`` spatial dimensions.

        """
        input_ndim = img.ndim - 1  # spatial ndim
        output_ndim = len(ensure_tuple(self.spatial_size))
        if output_ndim > input_ndim:
            input_shape = ensure_tuple_size(img.shape, output_ndim + 1, 1)
            img = img.reshape(input_shape)
        elif isinstance(self.spatial_size, tuple) and output_ndim < input_ndim:
            raise ValueError(
                "len(spatial_size) must be greater or equal to img spatial dimensions, "
                f"got spatial_size={output_ndim} img={input_ndim}.")
        assert np.count_nonzero(np.greater(self.spatial_size, 0)) == 1, \
                f"Spatial_size should have only one value > 0, but got {self.spatial_size}"

        if isinstance(self.spatial_size, int):
            spatial_size_ = (self.spatial_size, ) * (img.ndim - 1)
        else:
            spatial_size_ = self.spatial_size

        for idx in np.where(np.equal(spatial_size_, 0))[0]:  #change 0 to -1
            spatial_size_[idx] = -1

        aspect_ratio = np.divide(img.squeeze().shape, spatial_size_)
        ratio = aspect_ratio[np.greater(aspect_ratio, 0)]
        if len(ratio) > 1:
            ratio = np.mean(ratio)
        spatial_size = np.divide(img.squeeze().shape, ratio).astype(np.int)

        resized = _torch_interp(
            input=torch.as_tensor(np.ascontiguousarray(img),
                                  dtype=torch.float).unsqueeze(0),
            size=tuple(spatial_size),
            mode=self.mode.value
            if mode is None else InterpolateMode(mode).value,
            align_corners=self.align_corners
            if align_corners is None else align_corners,
        )
        resized = resized.squeeze(0).detach().cpu().numpy()
        return resized
Exemplo n.º 5
0
    def __init__(
        self,
        output_dir: str = "./",
        output_postfix: str = "trans",
        output_ext: str = ".nii.gz",
        resample: bool = True,
        mode: Union[GridSampleMode, InterpolateMode, str] = "nearest",
        padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,
        scale: Optional[int] = None,
        dtype: DtypeLike = np.float64,
        output_dtype: DtypeLike = np.float32,
        save_batch: bool = False,
        squeeze_end_dims: bool = True,
        data_root_dir: str = "",
        print_log: bool = True,
    ) -> None:
        self.saver: Union[NiftiSaver, PNGSaver]
        if output_ext in (".nii.gz", ".nii"):
            self.saver = NiftiSaver(
                output_dir=output_dir,
                output_postfix=output_postfix,
                output_ext=output_ext,
                resample=resample,
                mode=GridSampleMode(mode),
                padding_mode=padding_mode,
                dtype=dtype,
                output_dtype=output_dtype,
                squeeze_end_dims=squeeze_end_dims,
                data_root_dir=data_root_dir,
                print_log=print_log,
            )
        elif output_ext == ".png":
            self.saver = PNGSaver(
                output_dir=output_dir,
                output_postfix=output_postfix,
                output_ext=output_ext,
                resample=resample,
                mode=InterpolateMode(mode),
                scale=scale,
                data_root_dir=data_root_dir,
                print_log=print_log,
            )
        else:
            raise ValueError(f"unsupported output extension: {output_ext}.")

        self.save_batch = save_batch
Exemplo n.º 6
0
    def __init__(
        self,
        output_dir: str = "./",
        output_postfix: str = "seg",
        output_ext: str = ".png",
        resample: bool = True,
        mode: Union[InterpolateMode, str] = InterpolateMode.NEAREST,
        scale: Optional[int] = None,
        data_root_dir: str = "",
        print_log: bool = True,
    ) -> None:
        """
        Args:
            output_dir: output image directory.
            output_postfix: a string appended to all output file names.
            output_ext: output file extension name.
            resample: whether to resample and resize if providing spatial_shape in the metadata.
            mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
                The interpolation mode. Defaults to ``"nearest"``.
                See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
            scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling
                [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling.
            data_root_dir: if not empty, it specifies the beginning parts of the input file's
                absolute path. it's used to compute `input_file_rel_path`, the relative path to the file from
                `data_root_dir` to preserve folder structure when saving in case there are files in different
                folders with the same file names. for example:
                input_file_name: /foo/bar/test1/image.png,
                postfix: seg
                output_ext: png
                output_dir: /output,
                data_root_dir: /foo/bar,
                output will be: /output/test1/image/image_seg.png
            print_log: whether to print log about the saved PNG file path, etc. default to `True`.

        """
        self.output_dir = output_dir
        self.output_postfix = output_postfix
        self.output_ext = output_ext
        self.resample = resample
        self.mode: InterpolateMode = InterpolateMode(mode)
        self.scale = scale
        self.data_root_dir = data_root_dir
        self.print_log = print_log

        self._data_index = 0
Exemplo n.º 7
0
    def __init__(
        self,
        output_dir: str = "./",
        output_postfix: str = "seg",
        output_ext: str = ".nii.gz",
        resample: bool = True,
        mode: Union[GridSampleMode, InterpolateMode, str] = "nearest",
        padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,
        scale: Optional[int] = None,
        dtype: Optional[np.dtype] = np.float64,
        output_dtype: Optional[np.dtype] = np.float32,
        batch_transform: Callable = lambda x: x,
        output_transform: Callable = lambda x: x,
        name: Optional[str] = None,
    ) -> None:
        """
        Args:
            output_dir: output image directory.
            output_postfix: a string appended to all output file names.
            output_ext: output file extension name.
            resample: whether to resample before saving the data array.
            mode: This option is used when ``resample = True``. Defaults to ``"nearest"``.

                - NIfTI files {``"bilinear"``, ``"nearest"``}
                    Interpolation mode to calculate output values.
                    See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
                - PNG files {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
                    The interpolation mode.
                    See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate

            padding_mode: This option is used when ``resample = True``. Defaults to ``"border"``.

                - NIfTI files {``"zeros"``, ``"border"``, ``"reflection"``}
                    Padding mode for outside grid values.
                    See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
                - PNG files
                    This option is ignored.

            scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling
                [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling.
                It's used for PNG format only.
            dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.
                If None, use the data type of input data. To be compatible with other modules,
                the output data type is always ``np.float32``, it's used for Nifti format only.
            output_dtype: data type for saving data. Defaults to ``np.float32``, it's used for Nifti format only.
            batch_transform: a callable that is used to transform the
                ignite.engine.batch into expected format to extract the meta_data dictionary.
            output_transform: a callable that is used to transform the
                ignite.engine.output into the form expected image data.
                The first dimension of this transform's output will be treated as the
                batch dimension. Each item in the batch will be saved individually.
            name: identifier of logging.logger to use, defaulting to `engine.logger`.

        """
        self.saver: Union[NiftiSaver, PNGSaver]
        if output_ext in (".nii.gz", ".nii"):
            self.saver = NiftiSaver(
                output_dir=output_dir,
                output_postfix=output_postfix,
                output_ext=output_ext,
                resample=resample,
                mode=GridSampleMode(mode),
                padding_mode=padding_mode,
                dtype=dtype,
                output_dtype=output_dtype,
            )
        elif output_ext == ".png":
            self.saver = PNGSaver(
                output_dir=output_dir,
                output_postfix=output_postfix,
                output_ext=output_ext,
                resample=resample,
                mode=InterpolateMode(mode),
                scale=scale,
            )
        self.batch_transform = batch_transform
        self.output_transform = output_transform

        self.logger = logging.getLogger(name)
        self._name = name
Exemplo n.º 8
0
    def __init__(
        self,
        dimensions: int,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        scale_factor: Union[Sequence[float], float] = 2,
        mode: Union[UpsampleMode, str] = UpsampleMode.DECONV,
        pre_conv: Optional[Union[nn.Module, str]] = "default",
        interp_mode: Union[InterpolateMode, str] = InterpolateMode.LINEAR,
        align_corners: Optional[bool] = True,
        bias: bool = True,
        apply_pad_pool: bool = True,
    ) -> None:
        """
        Args:
            dimensions: number of spatial dimensions of the input image.
            in_channels: number of channels of the input image.
            out_channels: number of channels of the output image. Defaults to `in_channels`.
            scale_factor: multiplier for spatial size. Has to match input size if it is a tuple. Defaults to 2.
            mode: {``"deconv"``, ``"nontrainable"``, ``"pixelshuffle"``}. Defaults to ``"deconv"``.
            pre_conv: a conv block applied before upsampling. Defaults to None.
                When ``conv_block`` is ``"default"``, one reserved conv layer will be utilized when
                Only used in the "nontrainable" or "pixelshuffle" mode.
            interp_mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``}
                Only used when ``mode`` is ``UpsampleMode.NONTRAINABLE``.
                If ends with ``"linear"`` will use ``spatial dims`` to determine the correct interpolation.
                This corresponds to linear, bilinear, trilinear for 1D, 2D, and 3D respectively.
                The interpolation mode. Defaults to ``"linear"``.
                See also: https://pytorch.org/docs/stable/nn.html#upsample
            align_corners: set the align_corners parameter of `torch.nn.Upsample`. Defaults to True.
                Only used in the nontrainable mode.
            bias: whether to have a bias term in the default preconv and deconv layers. Defaults to True.
            apply_pad_pool: if True the upsampled tensor is padded then average pooling is applied with a kernel the
                size of `scale_factor` with a stride of 1. See also: :py:class:`monai.networks.blocks.SubpixelUpsample`.
                Only used in the pixelshuffle mode.
        """
        super().__init__()
        scale_factor_ = ensure_tuple_rep(scale_factor, dimensions)
        up_mode = UpsampleMode(mode)
        if up_mode == UpsampleMode.DECONV:
            if not in_channels:
                raise ValueError(
                    f"in_channels needs to be specified in the '{mode}' mode.")
            self.add_module(
                "deconv",
                Conv[Conv.CONVTRANS, dimensions](
                    in_channels=in_channels,
                    out_channels=out_channels or in_channels,
                    kernel_size=scale_factor_,
                    stride=scale_factor_,
                    bias=bias,
                ),
            )
        elif up_mode == UpsampleMode.NONTRAINABLE:
            if pre_conv == "default" and (
                    out_channels !=
                    in_channels):  # defaults to no conv if out_chns==in_chns
                if not in_channels:
                    raise ValueError(
                        f"in_channels needs to be specified in the '{mode}' mode."
                    )
                self.add_module(
                    "preconv",
                    Conv[Conv.CONV, dimensions](in_channels=in_channels,
                                                out_channels=out_channels
                                                or in_channels,
                                                kernel_size=1,
                                                bias=bias),
                )
            elif pre_conv is not None and pre_conv != "default":
                self.add_module("preconv", pre_conv)  # type: ignore

            interp_mode = InterpolateMode(interp_mode)
            linear_mode = [
                InterpolateMode.LINEAR, InterpolateMode.BILINEAR,
                InterpolateMode.TRILINEAR
            ]
            if interp_mode in linear_mode:  # choose mode based on dimensions
                interp_mode = linear_mode[dimensions - 1]
            self.add_module(
                "upsample_non_trainable",
                nn.Upsample(scale_factor=scale_factor_,
                            mode=interp_mode.value,
                            align_corners=align_corners),
            )
        elif up_mode == UpsampleMode.PIXELSHUFFLE:
            self.add_module(
                "pixelshuffle",
                SubpixelUpsample(
                    dimensions=dimensions,
                    in_channels=in_channels,
                    out_channels=out_channels,
                    scale_factor=scale_factor_[0],  # isotropic
                    conv_block=pre_conv,
                    apply_pad_pool=apply_pad_pool,
                    bias=bias,
                ),
            )
        else:
            raise NotImplementedError(f"Unsupported upsampling mode {mode}.")