Exemplo n.º 1
0
    def selection(self, population):

        selection = []
        out = []

        for p in population:
            touple = []
            touple.append(p)
            touple.append(self.get_word_value(p))
            selection.append(touple)

            if self.check_if_in_dict(p):

                if self.get_word_value(
                        p) >= self.best and self.can_create_from_letters(p):
                    if p not in out:
                        out.append(p)
                        out.append(''.join(random_permutation(p)))
                    self.best = self.get_word_value(p)
                    self.best_word = p

        Sort(selection)

        i = 0
        while len(out) < 10:
            if selection[len(selection) - i - 1][0] not in out:
                out.append(selection[len(selection) - i - 1][0])
            i += 1

        return out
Exemplo n.º 2
0
def random_split_windows(
    window, start: int = 3, end: int = 10, select_prob: float = 0.7
):
    set_range = random_window((start, end))
    yield from random_permutation(
        random_sample(select_prob, set_range(window))
    )
Exemplo n.º 3
0
    def test_full_permutation(self):
        """ensure every item from the iterable is returned in a new ordering

        15 elements have a 1 in 1.3 * 10e12 of appearing in sorted order, so
        we fix a seed value just to be sure.

        """
        i = range(15)
        r = mi.random_permutation(i)
        self.assertEqual(set(i), set(r))
        if i == r:
            raise AssertionError("Values were not permuted")
Exemplo n.º 4
0
    def test_full_permutation(self):
        """ensure every item from the iterable is returned in a new ordering

        15 elements have a 1 in 1.3 * 10e12 of appearing in sorted order, so
        we fix a seed value just to be sure.

        """
        i = range(15)
        r = mi.random_permutation(i)
        self.assertEqual(set(i), set(r))
        if i == r:
            raise AssertionError("Values were not permuted")
Exemplo n.º 5
0
def take_unchanged(mating_group: t.List[t.Tuple[GraphIndividual, Record]],
                   brood_size: int) -> t.List[GraphIndividual]:
    """
    Randomly takes `brood_size` number of individuals from the mating groups.
    :param mating_group: A group of individuals selected to give progeny.
    :param brood_size: A number of offsprings.
    :return: List of offsprings -- copies of the parents.
    """
    individuals, _ = unzip(mating_group)
    return list(
        take(brood_size,
             (ind.copy() for ind in random_permutation(individuals))))
Exemplo n.º 6
0
def recombine_into(mating_group: t.List[t.Tuple[GraphIndividual, Record]],
                   brood_size: int) -> t.List[GraphIndividual]:
    """
    Take all genes and distribute them into progeny.
    For two individuals with N genes and `brood_size=1`, the single offspring will have 2N genes.
    :param mating_group: A group of individuals selected to give progeny.
    :param brood_size: A number of offsprings.
    :return: List of offsprings.
    """
    pool = random_permutation(
        chain.from_iterable(ind.genes() for ind, _ in mating_group))
    chunks = distribute(brood_size, pool)
    return _init_chunks(mating_group, chunks)
Exemplo n.º 7
0
def recombine_genes_uniformly(mating_group: t.List[t.Tuple[Individual,
                                                           Record]],
                              brood_size: int) -> t.List[Individual]:
    """
    Combines genes of individuals in the `mating_group` in a single pool,
    and uniformly divides these genes into `brood_size` number of individuals.
    :param mating_group: A group of individuals selected to give progeny.
    :param brood_size: A number of offsprings.
    :return: List of offsprings.
    """
    pool = random_permutation(
        chain.from_iterable(ind.genes() for ind, _ in mating_group))
    chunks = take(brood_size, distribute(len(mating_group), pool))
    return _init_chunks(mating_group, chunks)
Exemplo n.º 8
0
def get_proxies():
    url = 'https://free-proxy-list.net/'
    response = requests.get(url)
    parser = fromstring(response.text)
    proxies = set()

    for i in parser.xpath('//tbody/tr')[:10]:
        if i.xpath('.//td[7][contains(text(),"yes")]'):
            # Grabbing IP and corresponding PORT
            proxy = ":".join(
                [i.xpath('.//td[1]/text()')[0],
                 i.xpath('.//td[2]/text()')[0]])
            proxies.add(proxy)

    return random_permutation(list(proxies))
Exemplo n.º 9
0
    def create_population(self):

        population = []

        for e in self.origin_setup:
            population.append(e)
        while len(population) < self.population_size:
            r = random.uniform(0, 1)
            if r > 0.5:
                population.append(
                    self.create_word(random.randint(0, self.max_word_length)))
            else:
                population.append(''.join(
                    random_permutation(random.choice(self.origin_setup))))
        self.best = self.get_word_value(population[0])
        return population
Exemplo n.º 10
0
def exchange_fraction(mating_group: t.List[t.Tuple[GraphIndividual, Record]],
                      brood_size: int,
                      fraction: float = 0.1) -> t.List[GraphIndividual]:
    """
    Takes `fraction` of genes from each Individual.
    Aggregates all taken fractions into a single pool.
    Samples from the pool the same number of genes an Individual has donated.
    :param mating_group: A group of individuals selected to give progeny.
    :param brood_size: A number of offsprings.
    :param fraction: A fraction of genes to take from an Individual.
    :return: List of offsprings.
    """
    staged_comb, staged_pool = tee(
        ((ind, floor(len(ind) * fraction)) for ind, _ in mating_group), 2)
    pool_samples, samples = tee(
        (take(n, ind.genes()) for ind, n in staged_pool), 2)
    pool = random_permutation(chain.from_iterable(pool_samples))
    recombined = (ind.copy().remove_genes(s).add_genes(take(n, pool))
                  for (ind, n), s in zip(staged_comb, samples))
    return list(take(brood_size, recombined))
Exemplo n.º 11
0
    def test_partial_permutation(self):
        """ensure all returned items are from the iterable, that the returned
        permutation is of the desired length, and that all items eventually
        get returned.

        Sampling 100 permutations of length 5 from a set of 15 leaves a
        (2/3)^100 chance that an item will not be chosen. Multiplied by 15
        items, there is a 1 in 2.6e16 chance that at least 1 item will not
        show up in the resulting output. Using a random seed will fix that.

        """
        items = range(15)
        item_set = set(items)
        all_items = set()
        for _ in range(100):
            permutation = mi.random_permutation(items, 5)
            self.assertEqual(len(permutation), 5)
            permutation_set = set(permutation)
            self.assertLessEqual(permutation_set, item_set)
            all_items |= permutation_set
        self.assertEqual(all_items, item_set)
Exemplo n.º 12
0
    def test_partial_permutation(self):
        """ensure all returned items are from the iterable, that the returned
        permutation is of the desired length, and that all items eventually
        get returned.

        Sampling 100 permutations of length 5 from a set of 15 leaves a
        (2/3)^100 chance that an item will not be chosen. Multiplied by 15
        items, there is a 1 in 2.6e16 chance that at least 1 item will not
        show up in the resulting output. Using a random seed will fix that.

        """
        items = range(15)
        item_set = set(items)
        all_items = set()
        for _ in range(100):
            permutation = mi.random_permutation(items, 5)
            self.assertEqual(len(permutation), 5)
            permutation_set = set(permutation)
            self.assertLessEqual(permutation_set, item_set)
            all_items |= permutation_set
        self.assertEqual(all_items, item_set)
Exemplo n.º 13
0
    def generate_buffer_from_lbl(self,
                                 X,
                                 cls_label,
                                 ses_label,
                                 random=False,
                                 truncate=False):
        buff_fill = 0
        buff_lbl = []
        buff_ind = []
        if random:
            iter = more_itertools.random_permutation(\
            more_itertools.unique_everseen(itertools.izip(cls_label,
                                                          ses_label)))
        else:
            iter = self.iters['cls']
        if self.buff_size > X.shape[0]:
            buff_ind = []
            for i in iter:
                bloc_length = X[(cls_label == i[0]) &
                                (ses_label == i[1]), :].shape[0]
                ind = np.where((cls_label == i[0]) &
                               (ses_label == i[1]))[0]
                buff_ind.append([i[0],
                                 i[1],
                                 buff_fill,
                                 buff_fill+bloc_length,
                                 ind[0],
                                 ind[-1]+1])
        else:
            for i in iter:
                bloc_length = X[(cls_label == i[0]) &
                                (ses_label == i[1]), :].shape[0]
                ind = np.where((cls_label == i[0]) &
                               (ses_label == i[1]))[0]
                if bloc_length > self.buff_size:
                    # process the current buffer first if any
                    if buff_fill > 0:
                        buff_ind.append(buff_lbl)
                    if truncate:
                        # fill a new buffer the truncated segment
                        buff_lbl = []
                        buff_lbl.append([i[0], i[1], 0, self.buff_size,
                                         ind[0], ind[0]+self.buff_size])
                        buff_ind.append(buff_lbl)
                        # empty buffer and continue processing
                        buff_fill = 0
                        buff_lbl = []
                    else:
                        bloc_left = bloc_length
                        while bloc_left > self.buff_size:
                            buff_lbl = []
                            buff_lbl.append([i[0],
                                             i[1],
                                             0,
                                             self.buff_size, ind[-1]+1 - bloc_left,
                                             ind[-1]+1 - bloc_left+self.buff_size])
                            print bloc_left, buff_lbl
                            buff_ind.append(buff_lbl)
                            bloc_left -= self.buff_size
                        buff_lbl = []
                        buff_lbl.append([i[0],
                                         i[1],
                                         0,
                                         bloc_left,
                                         ind[-1]+1 - bloc_left,
                                         ind[-1]+1])
                        buff_fill = bloc_left
                        print bloc_left, buff_lbl

                else:
                    if buff_fill + bloc_length <= self.buff_size:
                        buff_lbl.append([i[0], i[1],
                                         buff_fill,
                                         buff_fill+bloc_length,
                                         ind[0],
                                         ind[-1]+1])
                        buff_fill = buff_fill+bloc_length
                    else:
                        buff_ind.append(buff_lbl)
                        buff_lbl = []
                        buff_lbl.append([i[0],
                                         i[1],
                                         0,
                                         bloc_length,
                                         ind[0],
                                         ind[-1]+1])
                        buff_fill = bloc_length
            if buff_fill > 0:
                buff_ind.append(buff_lbl)
        return buff_ind
Exemplo n.º 14
0
def random_permute_generator(iterable, n):
    for _ in range(n):
        yield mit.random_permutation(iterable)
Exemplo n.º 15
0
def random_permute_generator(iterable, n=10):
    """Yield a random permuation of an iterable n times."""
    for _ in range(n):
        yield mit.random_permutation(iterable)
Exemplo n.º 16
0
from more_itertools import random_permutation

UppercaseLetter1 = chr(randint(65, 90))
#print(UppercaseLetter1)

UppercaseLetter2 = chr(randint(65, 90))
#print(UppercaseLetter2)

LowercaseLetter1 = chr(randint(65, 90)).lower()
#print(LowercaseLetter1)

LowercaseLetter2 = chr(randint(65, 90)).lower()
#print(LowercaseLetter2)

digit1 = str(randint(0, 9))
#print(digit1)

digit2 = str(randint(0, 9))
#print(digit2)

punctuationSign1 = chr(randint(33, 39))
#print(punctuationSign1)

punctuationSign2 = chr(randint(33, 39))
#print(punctuationSign2)

password = str(UppercaseLetter1 + UppercaseLetter2 + LowercaseLetter1 +
               LowercaseLetter2 + digit1 + digit2 + punctuationSign1 +
               punctuationSign2)
print(''.join(random_permutation(password)))
Exemplo n.º 17
0
 def sys_schedule(self, algo=lambda l: list(mit.random_permutation(l))[-1]):
     # In modern Linux kernels, schedule mustn't be called from any user processes, so it is no schedule function in the API
     # default algo: random scheduling
     proc = algo(self.processes)
     self.self_proc = proc
     return proc
Exemplo n.º 18
0
 def parse(self, df: pd.DataFrame) -> Iterable[Journey]:
     groups = (group
               for _, group in df.groupby(self.user_column, sort=False))
     groups = more_itertools.random_permutation(
         groups)  # randomly shuffle users
     return map(self.extract, groups)