Exemplo n.º 1
0
def test_RescaleIntensity():
    image = skimage.data.camera()
    with Pipeline() as pipeline:
        result = RescaleIntensity(image, in_range=(0, 200), dtype=np.uint8)

    pipeline.run()
Exemplo n.º 2
0
    name = Call(lambda p: os.path.splitext(os.path.basename(p))[0], abs_path)

    # Read image
    img = ImageReader(abs_path)

    # Show progress bar for frames
    #TQDM(Format("Frame {name}", name=name))
    
    # Apply running median to approximate the background image
    flat_field = RunningMedian(img, 5)

    # Correct image
    img = img / flat_field
    
    # Rescale intensities and convert to uint8 to speed up calculations
    img = RescaleIntensity(img, in_range=(0, 1.1), dtype="uint8")
    
    FilterVariables(name,img)
    #
    frame_fn = Format(os.path.join(CLEAN, "{name}.jpg"), name=name)
    ImageWriter(frame_fn, img)
    
    # Convert image to uint8 gray
    img_gray = RGB2Gray(img)
    
    # ?
    img_gray = Call(img_as_ubyte, img_gray)

    #Canny edge detection
    img_canny = Call(cv2.Canny, img_gray, 50,100)
Exemplo n.º 3
0
from morphocut.image import ImageWriter, RescaleIntensity
from morphocut.pims import BioformatsReader
from morphocut.str import Format
from morphocut.stream import TQDM, Slice, Pack

if __name__ == "__main__":
    with Pipeline() as p:
        input_fn = "/home/moi/Work/0-Datasets/06_CD20_brightfield_6.cif"

        frame, series = BioformatsReader(input_fn, meta=False)

        # Every second frame is in fact a mask
        # TODO: Batch consecutive objects in the stream

        frame, mask = Pack(2, frame).unpack(2)

        image_fn = Format("/tmp/cif/{}-img.png", series)
        mask_fn = Format("/tmp/cif/{}-mask.png", series)

        frame = RescaleIntensity(frame, dtype=np.uint8)
        mask = RescaleIntensity(mask, dtype=np.uint8)

        ImageWriter(image_fn, frame)
        ImageWriter(mask_fn, mask)

        TQDM()

    print(p)

    p.run()