Exemplo n.º 1
0
def test_Enumerate():
    with Pipeline() as pipeline:
        a = Unpack(range(10))
        i = Enumerate()

    stream = pipeline.transform_stream()

    for obj in stream:
        assert obj[a] == obj[i]
Exemplo n.º 2
0
    frame_fn = Format(os.path.join(ANNOTATED, "{name}.jpg"), name=name)
    ImageWriter(frame_fn, mask)
    
    # Find objects
    regionprops = FindRegions(
        mask, img_gray, min_area=1000, padding=10, warn_empty=name
    )
    # For an object, extract a vignette/ROI from the image
    roi_orig = ExtractROI(img, regionprops, bg_color=255)
    
    # For an object, extract a vignette/ROI from the image
    roi_mask = ExtractROI(mask, regionprops, bg_color=255)


    # Generate an object identifier
    i = Enumerate()
    #Call(print,i)

    object_id = Format("{name}_{i:d}", name=name, i=i)
    #Call(print,object_id)
    
    object_fn = Format(os.path.join(OBJECTS, "{name}.jpg"), name=object_id)
    ImageWriter(object_fn, roi_orig)


    # Calculate features. The calculated features are added to the global_metadata.
    # Returns a Variable representing a dict for every object in the stream.
    meta = CalculateZooProcessFeatures(
        regionprops, prefix="object_", meta=global_metadata
    )
    
Exemplo n.º 3
0
from morphocut.contrib.ecotaxa import EcotaxaWriter
from morphocut.contrib.zooprocess import CalculateZooProcessFeatures
from morphocut.file import Glob
from morphocut.image import FindRegions, ImageReader
from morphocut.parallel import ParallelPipeline
from morphocut.str import Format
from morphocut.stream import Enumerate, Unpack

# First, a Pipeline is defined that contains all operations
# that should be carried out on the objects of the stream.
with Pipeline() as p:
    # Corresponds to `for base_path in ["/path/a", "/path/b", "/path/c"]:`
    base_path = Unpack(["/path/a", "/path/b", "/path/c"])

    # Number the objects in the stream
    running_number = Enumerate()

    # Call calls regular Python functions.
    # Here, a subpath is appended to base_path.
    pattern = Call(os.path.join, base_path, "subpath/to/input/files/*.jpg")

    # Corresponds to `for path in glob(pattern):`
    path = Glob(pattern)

    # Remove path and extension from the filename
    source_basename = Call(lambda x: os.path.splitext(os.path.basename(x))[0], path)

    with ParallelPipeline():
        # The following operations are distributed among multiple
        # worker processes to speed up the calculations.