Exemplo n.º 1
0
def do_evaluate(pred_config, output_file):
    num_tower = max(cfg.TRAIN.NUM_GPUS, 1)
    graph_funcs = MultiTowerOfflinePredictor(pred_config, list(
        range(num_tower))).get_predictors()

    for dataset in cfg.DATA.VAL:
        logger.info("Evaluating {} ...".format(dataset))
        dataflows = [
            get_eval_dataflow(dataset, shard=k, num_shards=num_tower)
            for k in range(num_tower)
        ]
        all_results = multithread_predict_dataflow(dataflows, graph_funcs)
        output = output_file + '-' + dataset
        DatasetRegistry.get(dataset).eval_inference_results(
            all_results, output)
Exemplo n.º 2
0
def get_eval_dataflow(name, shard=0, num_shards=1):
    """
    Args:
        name (str): name of the dataset to evaluate
        shard, num_shards: to get subset of evaluation data
    """
    roidbs = DatasetRegistry.get(name).inference_roidbs()
    logger.info("Found {} images for inference.".format(len(roidbs)))

    num_imgs = len(roidbs)
    img_per_shard = num_imgs // num_shards
    img_range = (shard * img_per_shard, (shard + 1) *
                 img_per_shard if shard + 1 < num_shards else num_imgs)

    # no filter for training
    ds = DataFromListOfDict(roidbs[img_range[0]:img_range[1]],
                            ["file_name", "image_id"])

    def f(fname):
        im = cv2.imread(fname, cv2.IMREAD_COLOR)
        assert im is not None, fname
        return im

    ds = MapDataComponent(ds, f, 0)
    # Evaluation itself may be multi-threaded, therefore don't add prefetch here.
    return ds
Exemplo n.º 3
0
    def _eval(self):
        logdir = self._output_dir
        if cfg.TRAINER == 'replicated':
            all_results = multithread_predict_dataflow(self.dataflows,
                                                       self.predictors)
        else:
            filenames = [
                os.path.join(
                    logdir,
                    'outputs{}-part{}.json'.format(self.global_step, rank))
                for rank in range(hvd.local_size())
            ]

            if self._horovod_run_eval:
                local_results = predict_dataflow(self.dataflow, self.predictor)
                fname = filenames[hvd.local_rank()]
                with open(fname, 'w') as f:
                    json.dump(local_results, f)
            self.barrier.eval()
            if hvd.rank() > 0:
                return
            all_results = []
            for fname in filenames:
                with open(fname, 'r') as f:
                    obj = json.load(f)
                all_results.extend(obj)
                os.unlink(fname)

        scores = DatasetRegistry.get(
            self._eval_dataset).eval_inference_results(all_results)
        for k, v in scores.items():
            self.trainer.monitors.put_scalar(self._eval_dataset + '-' + k, v)
Exemplo n.º 4
0
def get_train_dataflow():
    """
    Return a training dataflow. Each datapoint consists of the following:

    An image: (h, w, 3),

    1 or more pairs of (anchor_labels, anchor_boxes):
    anchor_labels: (h', w', NA)
    anchor_boxes: (h', w', NA, 4)

    gt_boxes: (N, 4)
    gt_labels: (N,)

    If MODE_MASK, gt_masks: (N, h, w)
    """
    roidbs = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    print_class_histogram(roidbs)

    # Filter out images that have no gt boxes, but this filter shall not be applied for testing.
    # The model does support training with empty images, but it is not useful for COCO.
    num = len(roidbs)
    roidbs = list(
        filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0,
               roidbs))
    logger.info(
        "Filtered {} images which contain no non-crowd groudtruth boxes. Total #images for training: {}"
        .format(num - len(roidbs), len(roidbs)))

    ds = DataFromList(roidbs, shuffle=True)

    preprocess = TrainingDataPreprocessor(cfg)

    if cfg.DATA.NUM_WORKERS > 0:
        if cfg.TRAINER == "horovod":
            buffer_size = cfg.DATA.NUM_WORKERS * 10  # one dataflow for each process, therefore don't need large buffer
            ds = MultiThreadMapData(ds,
                                    cfg.DATA.NUM_WORKERS,
                                    preprocess,
                                    buffer_size=buffer_size)
            # MPI does not like fork()
        else:
            buffer_size = cfg.DATA.NUM_WORKERS * 20
            ds = MultiProcessMapData(ds,
                                     cfg.DATA.NUM_WORKERS,
                                     preprocess,
                                     buffer_size=buffer_size)
    else:
        ds = MapData(ds, preprocess)
    return ds