Exemplo n.º 1
0
def _maybe_convert_set(extracted_dir, source_csv, target_csv):
    print()
    if os.path.exists(target_csv):
        print('Found CSV file "%s" - not importing "%s".' % (target_csv, source_csv))
        return
    print('No CSV file "%s" - importing "%s"...' % (target_csv, source_csv))
    samples = []
    with open(source_csv) as source_csv_file:
        reader = csv.DictReader(source_csv_file)
        for row in reader:
            samples.append((os.path.join(extracted_dir, row["filename"]), row["text"]))

    # Mutable counters for the concurrent embedded routine
    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print("Importing mp3 files...")
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    print('Writing "%s"...' % target_csv)
    with open(target_csv, "w", encoding="utf-8", newline="") as target_csv_file:
        writer = csv.DictWriter(target_csv_file, fieldnames=FIELDNAMES)
        writer.writeheader()
        bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
        for filename, file_size, transcript in bar(rows):
            writer.writerow(
                {
                    "wav_filename": filename,
                    "wav_filesize": file_size,
                    "transcript": transcript,
                }
            )

    imported_samples = get_imported_samples(counter)
    assert counter["all"] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Exemplo n.º 2
0
def one_sample(sample):
    """ Take a audio file, and optionally convert it to 16kHz WAV """
    orig_filename = sample["path"]
    # Storing wav files next to the wav ones - just with a different suffix
    wav_filename = os.path.splitext(orig_filename)[0] + ".converted.wav"
    _maybe_convert_wav(orig_filename, wav_filename)
    file_size = -1
    frames = 0
    if os.path.exists(wav_filename):
        file_size = os.path.getsize(wav_filename)
        frames = int(
            subprocess.check_output(
                ["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
            )
        )
    label = sample["text"]

    rows = []

    # Keep track of how many samples are good vs. problematic
    counter = get_counter()
    if file_size == -1:
        # Excluding samples that failed upon conversion
        counter["failed"] += 1
    elif label is None:
        # Excluding samples that failed on label validation
        counter["invalid_label"] += 1
    elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
        # Excluding samples that are too short to fit the transcript
        counter["too_short"] += 1
    elif frames / SAMPLE_RATE > MAX_SECS:
        # Excluding very long samples to keep a reasonable batch-size
        counter["too_long"] += 1
    else:
        # This one is good - keep it for the target CSV
        rows.append((wav_filename, file_size, label))
        counter["imported_time"] += frames
    counter["all"] += 1
    counter["total_time"] += frames

    return (counter, rows)
Exemplo n.º 3
0
def one_sample(sample):
    """ Take a audio file, and optionally convert it to 16kHz WAV """
    wav_filename = sample[0]
    file_size = -1
    frames = 0
    if os.path.exists(wav_filename):
        tmp_filename = os.path.splitext(wav_filename)[0]+'.tmp.wav'
        subprocess.check_call(
            ['sox', wav_filename, '-r', str(SAMPLE_RATE), '-c', '1', '-b', '16', tmp_filename], stderr=subprocess.STDOUT
        )
        os.rename(tmp_filename, wav_filename)
        file_size = os.path.getsize(wav_filename)
        frames = int(
            subprocess.check_output(
                ["soxi", "-s", wav_filename], stderr=subprocess.STDOUT
            )
        )
    label = label_filter(sample[1])
    counter = get_counter()
    rows = []

    if file_size == -1:
        # Excluding samples that failed upon conversion
        print("conversion failure", wav_filename)
        counter["failed"] += 1
    elif label is None:
        # Excluding samples that failed on label validation
        counter["invalid_label"] += 1
    elif int(frames / SAMPLE_RATE * 1000 / 15 / 2) < len(str(label)):
        # Excluding samples that are too short to fit the transcript
        counter["too_short"] += 1
    elif frames / SAMPLE_RATE > MAX_SECS:
        # Excluding very long samples to keep a reasonable batch-size
        counter["too_long"] += 1
    else:
        # This one is good - keep it for the target CSV
        rows.append((wav_filename, file_size, label))
        counter["imported_time"] += frames
    counter["all"] += 1
    counter["total_time"] += frames
    return (counter, rows)
Exemplo n.º 4
0
def one_sample(sample):
    """ Take an audio file, and optionally convert it to 16kHz WAV """
    mp3_filename = sample[0]
    if not os.path.splitext(mp3_filename.lower())[1] == ".mp3":
        mp3_filename += ".mp3"
    # Storing wav files next to the mp3 ones - just with a different suffix
    wav_filename = os.path.splitext(mp3_filename)[0] + ".wav"
    _maybe_convert_wav(mp3_filename, wav_filename)
    file_size = -1
    frames = 0
    if os.path.exists(wav_filename):
        file_size = os.path.getsize(wav_filename)
        frames = int(
            subprocess.check_output(["soxi", "-s", wav_filename],
                                    stderr=subprocess.STDOUT))
    label = FILTER_OBJ.filter(sample[1])
    rows = []
    counter = get_counter()
    if file_size == -1:
        # Excluding samples that failed upon conversion
        counter["failed"] += 1
    elif label is None:
        # Excluding samples that failed on label validation
        counter["invalid_label"] += 1
    elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
        # Excluding samples that are too short to fit the transcript
        counter["too_short"] += 1
    elif frames / SAMPLE_RATE > MAX_SECS:
        # Excluding very long samples to keep a reasonable batch-size
        counter["too_long"] += 1
    else:
        # This one is good - keep it for the target CSV
        rows.append(
            (os.path.split(wav_filename)[-1], file_size, label, sample[2]))
        counter["imported_time"] += frames
    counter["all"] += 1
    counter["total_time"] += frames

    return (counter, rows)
Exemplo n.º 5
0
def _maybe_convert_sets(target_dir, extracted_data):
    extracted_dir = os.path.join(target_dir, extracted_data)
    # override existing CSV with normalized one
    target_csv_template = os.path.join(
        target_dir, ARCHIVE_DIR_NAME + "_" + ARCHIVE_NAME.replace(".zip", "_{}.csv")
    )
    if os.path.isfile(target_csv_template):
        return

    ogg_root_dir = os.path.join(extracted_dir, ARCHIVE_NAME.replace(".zip", ""))

    # Get audiofile path and transcript for each sentence in tsv
    samples = []
    glob_dir = os.path.join(ogg_root_dir, "**/*.ogg")
    for record in glob(glob_dir, recursive=True):
        record_file = record.replace(ogg_root_dir + os.path.sep, "")
        if record_filter(record_file):
            samples.append(
                (
                    os.path.join(ogg_root_dir, record_file),
                    os.path.splitext(os.path.basename(record_file))[0],
                )
            )

    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print("Importing ogg files...")
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file:  # 80%
        with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file:  # 10%
            with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file:  # 10%
                train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
                train_writer.writeheader()
                dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
                dev_writer.writeheader()
                test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
                test_writer.writeheader()

                for i, item in enumerate(rows):
                    transcript = validate_label(item[2])
                    if not transcript:
                        continue
                    wav_filename = os.path.join(
                        ogg_root_dir, item[0].replace(".ogg", ".wav")
                    )
                    i_mod = i % 10
                    if i_mod == 0:
                        writer = test_writer
                    elif i_mod == 1:
                        writer = dev_writer
                    else:
                        writer = train_writer
                    writer.writerow(
                        dict(
                            wav_filename=wav_filename,
                            wav_filesize=os.path.getsize(wav_filename),
                            transcript=transcript,
                        )
                    )

    imported_samples = get_imported_samples(counter)
    assert counter["all"] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Exemplo n.º 6
0
def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
    extracted_dir = os.path.join(target_dir, extracted_data)
    # override existing CSV with normalized one
    target_csv_template = os.path.join(target_dir, "ts_" + ARCHIVE_NAME + "_{}.csv")
    if os.path.isfile(target_csv_template):
        return
    path_to_original_csv = os.path.join(extracted_dir, "data.csv")
    with open(path_to_original_csv) as csv_f:
        data = [
            d
            for d in csv.DictReader(csv_f, delimiter=",")
            if float(d["duration"]) <= MAX_SECS
        ]

    for line in data:
        line["path"] = os.path.join(extracted_dir, line["path"])

    num_samples = len(data)
    rows = []
    counter = get_counter()

    print("Importing {} wav files...".format(num_samples))
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, data), start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file:  # 80%
        with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file:  # 10%
            with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file:  # 10%
                train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
                train_writer.writeheader()
                dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
                dev_writer.writeheader()
                test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
                test_writer.writeheader()

                for i, item in enumerate(rows):
                    transcript = validate_label(
                        cleanup_transcript(
                            item[2], english_compatible=english_compatible
                        )
                    )
                    if not transcript:
                        continue
                    wav_filename = os.path.join(target_dir, extracted_data, item[0])
                    i_mod = i % 10
                    if i_mod == 0:
                        writer = test_writer
                    elif i_mod == 1:
                        writer = dev_writer
                    else:
                        writer = train_writer
                    writer.writerow(
                        dict(
                            wav_filename=wav_filename,
                            wav_filesize=os.path.getsize(wav_filename),
                            transcript=transcript,
                        )
                    )

    imported_samples = get_imported_samples(counter)
    assert counter["all"] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Exemplo n.º 7
0
def _maybe_convert_sets(target_dir, extracted_data):
    extracted_dir = os.path.join(target_dir, extracted_data)
    # override existing CSV with normalized one
    target_csv_template = os.path.join(
        target_dir, ARCHIVE_DIR_NAME, ARCHIVE_NAME.replace(".tgz", "_{}.csv")
    )
    if os.path.isfile(target_csv_template):
        return

    wav_root_dir = os.path.join(extracted_dir)

    # Get audiofile path and transcript for each sentence in tsv
    samples = []
    glob_dir = os.path.join(wav_root_dir, "**/metadata.csv")
    for record in glob(glob_dir, recursive=True):
        if any(
            map(lambda sk: sk in record, SKIP_LIST)
        ):  # pylint: disable=cell-var-from-loop
            continue
        with open(record, "r") as rec:
            for re in rec.readlines():
                re = re.strip().split("|")
                audio = os.path.join(os.path.dirname(record), "wavs", re[0] + ".wav")
                transcript = re[2]
                samples.append((audio, transcript))

    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print("Importing WAV files...")
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(target_csv_template.format("train"), "w", encoding="utf-8", newline="") as train_csv_file:  # 80%
        with open(target_csv_template.format("dev"), "w", encoding="utf-8", newline="") as dev_csv_file:  # 10%
            with open(target_csv_template.format("test"), "w", encoding="utf-8", newline="") as test_csv_file:  # 10%
                train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
                train_writer.writeheader()
                dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
                dev_writer.writeheader()
                test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
                test_writer.writeheader()

                for i, item in enumerate(rows):
                    transcript = validate_label(item[2])
                    if not transcript:
                        continue
                    wav_filename = item[0]
                    i_mod = i % 10
                    if i_mod == 0:
                        writer = test_writer
                    elif i_mod == 1:
                        writer = dev_writer
                    else:
                        writer = train_writer
                    writer.writerow(
                        dict(
                            wav_filename=os.path.relpath(wav_filename, extracted_dir),
                            wav_filesize=os.path.getsize(wav_filename),
                            transcript=transcript,
                        )
                    )

    imported_samples = get_imported_samples(counter)
    assert counter["all"] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Exemplo n.º 8
0
def _maybe_convert_set(dataset,
                       tsv_dir,
                       audio_dir,
                       filter_obj,
                       space_after_every_character=None,
                       rows=None,
                       exclude=None):
    exclude_transcripts = set()
    exclude_speakers = set()
    if exclude is not None:
        for sample in exclude:
            exclude_transcripts.add(sample[2])
            exclude_speakers.add(sample[3])

    if rows is None:
        rows = []
        input_tsv = os.path.join(os.path.abspath(tsv_dir), dataset + ".tsv")
        if not os.path.isfile(input_tsv):
            return rows
        print("Loading TSV file: ", input_tsv)
        # Get audiofile path and transcript for each sentence in tsv
        samples = []
        with open(input_tsv, encoding="utf-8") as input_tsv_file:
            reader = csv.DictReader(input_tsv_file, delimiter="\t")
            for row in reader:
                samples.append((os.path.join(audio_dir, row["path"]),
                                row["sentence"], row["client_id"]))

        counter = get_counter()
        num_samples = len(samples)

        print("Importing mp3 files...")
        pool = Pool(initializer=init_worker, initargs=(PARAMS, ))
        bar = progressbar.ProgressBar(max_value=num_samples,
                                      widgets=SIMPLE_BAR)
        for i, processed in enumerate(pool.imap_unordered(one_sample, samples),
                                      start=1):
            counter += processed[0]
            rows += processed[1]
            bar.update(i)
        bar.update(num_samples)
        pool.close()
        pool.join()

        imported_samples = get_imported_samples(counter)
        assert counter["all"] == num_samples
        assert len(rows) == imported_samples
        print_import_report(counter, SAMPLE_RATE, MAX_SECS)

    output_csv = os.path.join(os.path.abspath(audio_dir), dataset + ".csv")
    print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
    with open(output_csv, "w", encoding="utf-8",
              newline="") as output_csv_file:
        print("Writing CSV file for DeepSpeech.py as: ", output_csv)
        writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
        writer.writeheader()
        bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
        for filename, file_size, transcript, speaker in bar(rows):
            if transcript in exclude_transcripts or speaker in exclude_speakers:
                continue
            if space_after_every_character:
                writer.writerow({
                    "wav_filename": filename,
                    "wav_filesize": file_size,
                    "transcript": " ".join(transcript),
                })
            else:
                writer.writerow({
                    "wav_filename": filename,
                    "wav_filesize": file_size,
                    "transcript": transcript,
                })
    return rows