Exemplo n.º 1
0
 def ifft(self, fu, u):
     """Inverse Fourier transforms in y and z"""
     Uc_mpi = self.work_arrays[((self.num_processes, self.Np[0], self.Np[1],
                                 self.Nf), self.complex, 0)]
     Uc_hatT = self.work_arrays[(self.complex_shape_T(), self.complex, 0)]
     self.comm.Alltoall([fu, self.mpitype], [Uc_mpi, self.mpitype])
     Uc_hatT[:] = rollaxis(Uc_mpi, 1).reshape(self.complex_shape_T())
     u = irfft2(Uc_hatT,
                u,
                axes=(1, 2),
                threads=self.threads,
                planner_effort=self.planner_effort['irfft2'])
     return u
Exemplo n.º 2
0
    def backward(self, fu, u, fun, dealias=None):

        Uc_hat = self.work_arrays[(self.complex_shape(), self.complex, 0,
                                   False)]
        Uc_mpi = Uc_hat.reshape(
            (self.num_processes, self.Np[0], self.Np[1], self.Nf))
        fun = fun.backward

        if dealias == '2/3-rule' and self.dealias.shape == (0, ):
            self.dealias = self.get_dealias_filter()

        if self.num_processes == 1:
            if not dealias == '3/2-rule':
                fup = fu
                if dealias == '2/3-rule':
                    fup = self.work_arrays[(fu, 1, False)]
                    fup[:] = fu
                    fup *= self.dealias

                Uc_hat = fun(fup, Uc_hat)
                u = irfft2(Uc_hat,
                           u,
                           axes=(1, 2),
                           overwrite_input=True,
                           threads=self.threads,
                           planner_effort=self.planner_effort['irfft2'])

            else:
                if not self.dealias_cheb:
                    Upad_hat = self.work_arrays[(self.complex_shape_padded(),
                                                 self.complex, 0)]
                    Upad_hat_z = self.work_arrays[((self.Np[0],
                                                    int(self.padsize *
                                                        self.N[1]), self.Nf),
                                                   self.complex, 0)]

                    Uc_hat = fun(fu * self.padsize**2, Uc_hat)
                    Upad_hat_z = SlabShen_R2C.copy_to_padded(
                        Uc_hat, Upad_hat_z, self.N, 1)
                    Upad_hat_z[:] = ifft(
                        Upad_hat_z,
                        axis=1,
                        threads=self.threads,
                        planner_effort=self.planner_effort['ifft'])
                    Upad_hat = SlabShen_R2C.copy_to_padded(
                        Upad_hat_z, Upad_hat, self.N, 2)
                    u = irfft(Upad_hat,
                              u,
                              axis=2,
                              overwrite_input=True,
                              threads=self.threads,
                              planner_effort=self.planner_effort['irfft'])

                else:
                    # Intermediate work arrays required for transform
                    Upad_hat = self.work_arrays[(self.complex_shape_padded_0(),
                                                 self.complex, 0, False)]
                    Upad_hat0 = self.work_arrays[(
                        self.complex_shape_padded_0(), self.complex, 1)]
                    Upad_hat1 = self.work_arrays[(
                        self.complex_shape_padded_1(), self.complex, 0, False)]
                    Upad_hat2 = self.work_arrays[(
                        self.complex_shape_padded_2(), self.complex, 0)]
                    Upad_hat3 = self.work_arrays[(
                        self.complex_shape_padded_3(), self.complex, 0)]

                    # Expand in x-direction and perform ifst
                    Upad_hat0 = SlabShen_R2C.copy_to_padded(
                        fu * self.padsize**2, Upad_hat0, self.N, 0)
                    Upad_hat = fun(Upad_hat0, Upad_hat)

                    Upad_hat2 = SlabShen_R2C.copy_to_padded(
                        Upad_hat, Upad_hat2, self.N, 1)
                    Upad_hat2[:] = ifft(
                        Upad_hat2,
                        axis=1,
                        threads=self.threads,
                        planner_effort=self.planner_effort['ifft'])

                    # pad in z-direction and perform final irfft
                    Upad_hat3 = SlabShen_R2C.copy_to_padded(
                        Upad_hat2, Upad_hat3, self.N, 2)
                    u = irfft(Upad_hat3,
                              u,
                              axis=2,
                              overwrite_input=True,
                              threads=self.threads,
                              planner_effort=self.planner_effort['irfft'])

            return u

        if not dealias == '3/2-rule':
            Uc_hatT = self.work_arrays[(self.complex_shape_T(), self.complex,
                                        0, False)]
            if dealias == '2/3-rule':
                fu *= self.dealias

            Uc_hat = fun(fu, Uc_hat)

            if self.communication == 'Alltoall':
                self.comm.Alltoall(MPI.IN_PLACE, [Uc_hat, self.mpitype])
                Uc_hatT[:] = rollaxis(Uc_mpi,
                                      1).reshape(self.complex_shape_T())
                #Uc_mpi  = self.work_arrays[((self.num_processes, self.Np[0], self.Np[1], self.Nf), self.complex, 0, False)]
                #self.comm.Alltoall([Uc_hat, self.mpitype], [Uc_mpi, self.mpitype])
                #Uc_hatT = rollaxis(Uc_mpi, 1).reshape(self.complex_shape_T())

            elif self.communication == 'Alltoallw':
                if not self._subarraysA:
                    self._subarraysA, self._subarraysB, self._counts_displs = self.get_subarrays(
                    )
                Uc_hatT = self.work_arrays[(self.complex_shape_T(),
                                            self.complex, 0, False)]
                self.comm.Alltoallw(
                    [Uc_hat, self._counts_displs, self._subarraysA],
                    [Uc_hatT, self._counts_displs, self._subarraysB])

            u = irfft2(Uc_hatT,
                       u,
                       axes=(1, 2),
                       overwrite_input=True,
                       threads=self.threads,
                       planner_effort=self.planner_effort['irfft2'])

        else:
            Uc_hatT = self.work_arrays[(self.complex_shape_T(), self.complex,
                                        0, False)]
            if not self.dealias_cheb:
                Upad_hatT = self.work_arrays[(self.complex_shape_padded_T(),
                                              self.complex, 0)]
                Upad_hat_z = self.work_arrays[((self.Np[0],
                                                int(self.padsize * self.N[1]),
                                                self.Nf), self.complex, 0)]

                Uc_hat = fun(fu * self.padsize**2, Uc_hat)
                if self.communication == 'Alltoall':
                    # In-place
                    #self.comm.Alltoall(MPI.IN_PLACE, [Uc_hat, self.mpitype])
                    # Not in-place
                    Uc_mpi = self.work_arrays[((self.num_processes, self.Np[0],
                                                self.Np[1], self.Nf),
                                               self.complex, 0, False)]
                    self.comm.Alltoall([Uc_hat, self.mpitype],
                                       [Uc_mpi, self.mpitype])

                    Uc_hatT[:] = rollaxis(Uc_mpi,
                                          1).reshape(self.complex_shape_T())

                elif self.communication == 'Alltoallw':
                    if not self._subarraysA:
                        self._subarraysA, self._subarraysB, self._counts_displs = self.get_subarrays(
                        )

                    self.comm.Alltoallw(
                        [Uc_hat, self._counts_displs, self._subarraysA],
                        [Uc_hatT, self._counts_displs, self._subarraysB])

                Upad_hat_z = SlabShen_R2C.copy_to_padded(
                    Uc_hatT, Upad_hat_z, self.N, 1)
                Upad_hat_z[:] = ifft(
                    Upad_hat_z,
                    axis=1,
                    threads=self.threads,
                    planner_effort=self.planner_effort['ifft'])
                Upad_hatT = SlabShen_R2C.copy_to_padded(
                    Upad_hat_z, Upad_hatT, self.N, 2)
                u = irfft(Upad_hatT,
                          u,
                          axis=2,
                          overwrite_input=True,
                          threads=self.threads,
                          planner_effort=self.planner_effort['irfft'])

            else:
                assert self.num_processes <= self.N[
                    0] / 2, "Number of processors cannot be larger than N[0]/2 for 3/2-rule"

                # Intermediate work arrays required for transform
                Upad_hat = self.work_arrays[(self.complex_shape_padded_0(),
                                             self.complex, 0, False)]
                Upad_hat0 = self.work_arrays[(self.complex_shape_padded_0(),
                                              self.complex, 1)]
                Upad_hat1 = self.work_arrays[(self.complex_shape_padded_1(),
                                              self.complex, 0, False)]
                Upad_hat2 = self.work_arrays[(self.complex_shape_padded_2(),
                                              self.complex, 0)]
                Upad_hat3 = self.work_arrays[(self.complex_shape_padded_3(),
                                              self.complex, 0)]

                # Expand in x-direction and perform ifst
                Upad_hat0 = SlabShen_R2C.copy_to_padded(
                    fu * self.padsize**2, Upad_hat0, self.N, 0)
                Upad_hat = fun(Upad_hat0, Upad_hat)

                if self.communication == 'Alltoall':
                    # Communicate to distribute first dimension (like Fig. 2b but padded in x-dir)
                    self.comm.Alltoall(MPI.IN_PLACE, [Upad_hat, self.mpitype])

                    # Transpose data and pad in y-direction before doing ifft. Now data is padded in x and y
                    U_mpi = Upad_hat.reshape(self.complex_shape_padded_0_I())
                    Upad_hat1[:] = rollaxis(U_mpi, 1).reshape(Upad_hat1.shape)

                elif self.communication == 'Alltoallw':
                    if not self._subarraysA_pad:
                        self._subarraysA_pad, self._subarraysB_pad, self._counts_displs = self.get_subarrays(
                            padsize=self.padsize)
                    self.comm.Alltoallw(
                        [Upad_hat, self._counts_displs, self._subarraysA_pad],
                        [Upad_hat1, self._counts_displs, self._subarraysB_pad])

                Upad_hat2 = SlabShen_R2C.copy_to_padded(
                    Upad_hat1, Upad_hat2, self.N, 1)
                Upad_hat2[:] = ifft(Upad_hat2,
                                    axis=1,
                                    threads=self.threads,
                                    planner_effort=self.planner_effort['ifft'])

                # pad in z-direction and perform final irfft
                Upad_hat3 = SlabShen_R2C.copy_to_padded(
                    Upad_hat2, Upad_hat3, self.N, 2)
                u = irfft(Upad_hat3,
                          u,
                          axis=2,
                          overwrite_input=True,
                          threads=self.threads,
                          planner_effort=self.planner_effort['irfft'])

        return u