Exemplo n.º 1
0
    def plot(self,
             x: Optional[Iterable],
             kind: str = 'line',
             color: str = 'C0',
             mean: bool = False,
             median: bool = False,
             mode: bool = False,
             std: bool = False,
             ax: Optional[Axes] = None,
             **kwargs) -> Axes:
        """
        Plot the function.

        :param x: Range of values of x to plot p(x) over.
        :param kind: Kind of plot e.g. 'bar', 'line'.
        :param color: Optional color for the series.
        :param mean: Whether to show marker and label for the mean.
        :param median: Whether to show marker and label for the median.
        :param mode: Whether to show marker and label for the mode.
        :param std: Whether to show marker and label for the standard deviation.
        :param ax: Optional matplotlib axes to plot on.
        :param kwargs: Additional arguments for the matplotlib plot function.
        """
        if x is None:
            if (hasattr(self._parent, 'lower_bound')
                    and hasattr(self._parent, 'upper_bound')):
                x = linspace(self._parent.lower_bound,
                             self._parent.upper_bound, 1001)
            else:
                raise ValueError('Must pass x if distribution has no bounds.')

        data: Series = self.at(x)
        axf = AxesFormatter(axes=ax)
        ax = axf.axes

        if self._method_name in ('pdf', 'cdf', 'logpdf'):
            if 'label' not in kwargs.keys():
                kwargs['label'] = self._parent.label
            data.plot(kind=kind, color=color, ax=axf.axes, **kwargs)
        else:
            raise ValueError('plot not implemented for {}'.format(self._name))

        # stats
        y_min = axf.get_y_min()
        y_max = axf.get_y_max()
        x_mean = self._distribution.mean()
        if mean:
            axf.add_v_lines(x=x_mean,
                            y_min=y_min,
                            y_max=y_max,
                            line_styles='--',
                            colors=color)
            axf.add_text(x=x_mean,
                         y=self._distribution.pdf(x_mean),
                         text=f'mean={x_mean: 0.3f}',
                         color=color,
                         h_align='center',
                         v_align='bottom')
        if median:
            x_median = self._distribution.median()
            axf.add_v_lines(x=x_median,
                            y_min=y_min,
                            y_max=y_max,
                            line_styles='-.',
                            colors=color)
            axf.add_text(x=x_median,
                         y=self._distribution.pdf(x_median),
                         text=f'median={x_median: 0.3f}',
                         color=color,
                         h_align='center',
                         v_align='bottom')
        if mode:
            x_mode = self._parent.mode()
            axf.add_v_lines(x=x_mode,
                            y_min=y_min,
                            y_max=y_max,
                            line_styles='-.',
                            colors=color)
            axf.add_text(x=x_mode,
                         y=self._distribution.pdf(x_mode),
                         text=f'mode={x_mode: 0.3f}',
                         color=color,
                         h_align='center',
                         v_align='bottom')
        if std:
            x_std = self._distribution.std()
            axf.add_v_lines(x=[x_mean - x_std, x_mean + x_std],
                            y_min=y_min,
                            y_max=y_max,
                            line_styles=':',
                            colors=color)
            axf.add_text(x=x_mean - x_std / 2,
                         y=self._distribution.pdf(x_mean - x_std / 2),
                         text=f'std={x_std: 0.3f}',
                         color=color,
                         h_align='center',
                         v_align='bottom')

        ax.set_xlabel(self._parent.x_label)

        if self._parent.y_label:
            ax.set_ylabel(self._parent.y_label)
        else:
            if self._method_name == 'pdf':
                ax.set_ylabel('P(X = x)')
            elif self._method_name == 'cdf':
                ax.set_ylabel('P(X ≤ x)')
            elif self._method_name == 'logpdf':
                ax.set_ylabel('log P(X = x)')
            else:
                ax.set_ylabel(self._name)

        return ax
Exemplo n.º 2
0
    def plot(self,
             k: Optional[Iterable[int]],
             color: str = 'C0',
             kind: str = 'bar',
             mean: bool = False,
             median: bool = False,
             std: bool = False,
             ax: Optional[Axes] = None,
             **kwargs) -> Axes:
        """
        Plot the function.

        :param k: Range of values of k to plot p(k) over.
        :param color: Optional color for the series.
        :param kind: Kind of plot e.g. 'bar', 'line'.
        :param mean: Whether to show marker and label for the mean.
        :param median: Whether to show marker and label for the median.
        :param std: Whether to show marker and label for the standard deviation.
        :param ax: Optional matplotlib axes to plot on.
        :param kwargs: Additional arguments for the matplotlib plot function.
        """
        if k is None:
            if (hasattr(self._parent, 'lower_bound')
                    and hasattr(self._parent, 'upper_bound')):
                k = range(self._parent.lower_bound,
                          self._parent.upper_bound + 1)
            else:
                raise ValueError('Must pass k if distribution has no bounds.')

        data: Series = self.at(k)
        axf = AxesFormatter(axes=ax)
        ax = axf.axes

        # special kwargs
        vlines = None
        if 'vlines' in kwargs.keys():
            vlines = kwargs.pop('vlines')
        if 'label' not in kwargs.keys():
            kwargs['label'] = self._parent.label

        if self._method_name == 'pmf':
            data.plot(kind=kind, color=color, ax=axf.axes, **kwargs)
        elif self._method_name == 'cdf':
            data.plot(kind='line',
                      color=color,
                      drawstyle='steps-post',
                      ax=axf.axes,
                      **kwargs)
        else:
            raise ValueError('plot not implemented for {}'.format(self._name))
        if vlines:
            axf.axes.vlines(x=k, ymin=0, ymax=data.values, color=color)

        y_min = axf.get_y_min()
        y_max = axf.get_y_max()
        x_mean = self._distribution.mean()
        if mean:
            axf.add_v_lines(x=x_mean,
                            y_min=y_min,
                            y_max=y_max,
                            line_styles='--',
                            colors=color)
            axf.add_text(x=x_mean,
                         y=self._distribution.pmf(x_mean),
                         text=f'mean={x_mean: 0.3f}',
                         color=color,
                         h_align='center',
                         v_align='bottom')
        if median:
            x_median = self._distribution.median()
            axf.add_v_lines(x=x_median,
                            y_min=y_min,
                            y_max=y_max,
                            line_styles='-.',
                            colors=color)
            axf.add_text(x=x_median,
                         y=self._distribution.pmf(x_median),
                         text=f'median={x_median: 0.3f}',
                         color=color,
                         h_align='center',
                         v_align='bottom')
        if std:
            x_std = self._distribution.std()
            axf.add_v_lines(x=[x_mean - x_std, x_mean + x_std],
                            y_min=y_min,
                            y_max=y_max,
                            line_styles=':',
                            colors=color)
            axf.add_text(x=x_mean - x_std / 2,
                         y=self._distribution.pmf(x_mean - x_std / 2),
                         text=f'std={x_std: 0.3f}',
                         color=color,
                         h_align='center',
                         v_align='bottom')

        ax.set_xlabel(self._parent.x_label)

        if self._parent.y_label:
            ax.set_ylabel(self._parent.y_label)
        else:
            if self._method_name == 'pmf':
                ax.set_ylabel('P(K = k)')
            elif self._method_name == 'cdf':
                ax.set_ylabel('P(K ≤ k)')
            else:
                ax.set_ylabel(self._name)

        return ax