def _a(n, k, prec): """ Compute the inner sum in HRR formula [1]_ References ========== .. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf """ if k == 1: return fone k1 = k e = 0 p = _factor[k] while k1 % p == 0: k1 //= p e += 1 k2 = k//k1 # k2 = p^e v = 1 - 24*n pi = mpf_pi(prec) if k1 == 1: # k = p^e if p == 2: mod = 8*k v = mod + v % mod v = (v*pow(9, k - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 2, e + 3)[0] arg = mpf_div(mpf_mul( from_int(4*m), pi, prec), from_int(mod), prec) return mpf_mul(mpf_mul( from_int((-1)**e*jacobi_symbol(m - 1, m)), mpf_sqrt(from_int(k), prec), prec), mpf_sin(arg, prec), prec) if p == 3: mod = 3*k v = mod + v % mod if e > 1: v = (v*pow(64, k//3 - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 3, e + 1)[0] arg = mpf_div(mpf_mul(from_int(4*m), pi, prec), from_int(mod), prec) return mpf_mul(mpf_mul( from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)), mpf_sqrt(from_int(k//3), prec), prec), mpf_sin(arg, prec), prec) v = k + v % k if v % p == 0: if e == 1: return mpf_mul( from_int(jacobi_symbol(3, k)), mpf_sqrt(from_int(k), prec), prec) return fzero if not is_quad_residue(v, p): return fzero _phi = p**(e - 1)*(p - 1) v = (v*pow(576, _phi - 1, k)) m = _sqrt_mod_prime_power(v, p, e)[0] arg = mpf_div( mpf_mul(from_int(4*m), pi, prec), from_int(k), prec) return mpf_mul(mpf_mul( from_int(2*jacobi_symbol(3, k)), mpf_sqrt(from_int(k), prec), prec), mpf_cos(arg, prec), prec) if p != 2 or e >= 3: d1, d2 = igcd(k1, 24), igcd(k2, 24) e = 24//(d1*d2) n1 = ((d2*e*n + (k2**2 - 1)//d1)* pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1 n2 = ((d1*e*n + (k1**2 - 1)//d2)* pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec) if e == 2: n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1 n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4 return mpf_mul(mpf_mul( from_int(-1), _a(n1, k1, prec), prec), _a(n2, k2, prec)) n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1 n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
def _a(n, k, prec): """ Compute the inner sum in HRR formula [1]_ References ========== .. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf """ if k == 1: return fone k1 = k e = 0 p = _factor[k] while k1 % p == 0: k1 //= p e += 1 k2 = k // k1 # k2 = p^e v = 1 - 24 * n pi = mpf_pi(prec) if k1 == 1: # k = p^e if p == 2: mod = 8 * k v = mod + v % mod v = (v * pow(9, k - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 2, e + 3)[0] arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(mod), prec) return mpf_mul( mpf_mul(from_int((-1)**e * jacobi_symbol(m - 1, m)), mpf_sqrt(from_int(k), prec), prec), mpf_sin(arg, prec), prec) if p == 3: mod = 3 * k v = mod + v % mod if e > 1: v = (v * pow(64, k // 3 - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 3, e + 1)[0] arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(mod), prec) return mpf_mul( mpf_mul(from_int(2 * (-1)**(e + 1) * legendre_symbol(m, 3)), mpf_sqrt(from_int(k // 3), prec), prec), mpf_sin(arg, prec), prec) v = k + v % k if v % p == 0: if e == 1: return mpf_mul(from_int(jacobi_symbol(3, k)), mpf_sqrt(from_int(k), prec), prec) return fzero if not is_quad_residue(v, p): return fzero _phi = p**(e - 1) * (p - 1) v = (v * pow(576, _phi - 1, k)) m = _sqrt_mod_prime_power(v, p, e)[0] arg = mpf_div(mpf_mul(from_int(4 * m), pi, prec), from_int(k), prec) return mpf_mul( mpf_mul(from_int(2 * jacobi_symbol(3, k)), mpf_sqrt(from_int(k), prec), prec), mpf_cos(arg, prec), prec) if p != 2 or e >= 3: d1, d2 = igcd(k1, 24), igcd(k2, 24) e = 24 // (d1 * d2) n1 = ((d2 * e * n + (k2**2 - 1) // d1) * pow(e * k2 * k2 * d2, _totient[k1] - 1, k1)) % k1 n2 = ((d1 * e * n + (k1**2 - 1) // d2) * pow(e * k1 * k1 * d1, _totient[k2] - 1, k2)) % k2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec) if e == 2: n1 = ((8 * n + 5) * pow(128, _totient[k1] - 1, k1)) % k1 n2 = (4 + ((n - 2 - (k1**2 - 1) // 8) * (k1**2)) % 4) % 4 return mpf_mul(mpf_mul(from_int(-1), _a(n1, k1, prec), prec), _a(n2, k2, prec)) n1 = ((8 * n + 1) * pow(32, _totient[k1] - 1, k1)) % k1 n2 = (2 + (n - (k1**2 - 1) // 8) % 2) % 2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)