Exemplo n.º 1
0
    def Merge(self, prec=epsilon):
        """
        Merge merges consecutive ramp(s) if they have the same acceleration
        """
        if not self.isEmpty:
            if Abs((Abs(mp.log10(prec)) - (Abs(mp.floor(mp.log10(prec)))))) < Abs((Abs(mp.log10(prec)) - (Abs(mp.ceil(mp.log10(prec)))))):
                precexp = mp.floor(mp.log10(prec))
            else:
                precexp = mp.ceil(mp.log10(prec))
                
            aCur = self.ramps[0].a
            nmerged = 0 # the number of merged ramps
            for i in xrange(1, len(self.ramps)):
                j = i - nmerged
                if (Abs(self.ramps[j].a) > 1):
                    if Abs((Abs(mp.log10(Abs(self.ramps[j].a))) - (Abs(mp.floor(mp.log10(Abs(self.ramps[j].a))))))) < Abs((Abs(mp.log10(Abs(self.ramps[j].a))) - (Abs(mp.ceil(mp.log10(Abs(self.ramps[j].a))))))):
                        threshold = 10**(precexp + mp.floor(mp.log10(Abs(self.ramps[j].a))) + 1)
                    else:
                        threshold = 10**(precexp + mp.ceil(mp.log10(Abs(self.ramps[j].a))) + 1)
                else:
                    threshold = 10**(precexp)
                if Abs(Sub(self.ramps[j].a, aCur)) < threshold:
                    # merge ramps
                    redundantRamp = self.ramps.pop(j)
                    newDur = Add(self.ramps[j - 1].duration, redundantRamp.duration)
                    self.ramps[j - 1].UpdateDuration(newDur)

                    # merge switchpointsList
                    self.switchpointsList.pop(j)

                    nmerged += 1
                else:
                    aCur = self.ramps[j].a
Exemplo n.º 2
0
 def v(sigma, t, a0, ksumcache):
     if (sigma >= 0):
         return 1 + 0.4 * mp.power(9, sigma) / a0 + 0.346 * mp.power(
             2, 3 * sigma / 2.0) / (a0**2)
     if (sigma < 0):
         K = int(mp.floor(-1 * sigma) + 3)
         return 1 + mp.power(0.9, mp.ceil(-1 * sigma)) * ksumcache[K]
Exemplo n.º 3
0
    def compress(self, time_series: List[int]) -> int:
        if time_series is None or len(time_series) == 0:
            return 0

        one_letter_probability = mp.mpf(1.0) / (self._alphabet_max_symbol -
                                                self._alphabet_min_symbol + 1)
        series_probability = mp.power(one_letter_probability, len(time_series))
        return int(mp.ceil(-mp.log(series_probability, 2)))
Exemplo n.º 4
0
 def v(sigma, s, t):
     T0 = s.imag
     T0dash = T0 + mp.pi() * t / 8.0
     a0 = mp.sqrt(T0dash / (2 * mp.pi()))
     if (sigma >= 0):
         return 1 + 0.4 * mp.power(9, sigma) / a0 + 0.346 * mp.power(
             2, 3 * sigma / 2.0) / (a0**2)
     if (sigma < 0):
         K = int(mp.floor(-1 * sigma) + 3)
         ksum = 0.0
         for k in range(1, K + 2):
             ksum += mp.power(1.1 / a0, k) * mp.gamma(mp.mpf(k) / 2.0)
         return 1 + mp.power(0.9, mp.ceil(-1 * sigma)) * ksum
Exemplo n.º 5
0
b = [root for root in roots if mp.im(root) == mp.mpf(0)][0]
bottom = b + mp.power(b, 2) / (wx + b)

print(
    "Print dimensions: {wx!s} x {wy!s}\n"
    "Resulting border: {b!s}\n"
    "Resulting bottom border: {bottom!s}"
    .format(wx=wx, wy=wy, b=b, bottom=bottom)
)

v = dict(
    mat_l=0 - b,
    mat_t=b,
    mat_w=wx + 2 * b,
    mat_h=-1 * (wy + b + bottom),
)
v['grid_l'] = 0 - mp.ceil(b)
v['grid_t'] = mp.ceil(b)
v['grid_w'] = mp.ceil(v['mat_w'])
v['grid_h'] = mp.ceil(v['mat_h'] - 1)


print(r"""
\begin{{tikzpicture}}
    \draw[help lines,very thin,color=blue!50!green!50,step=1] ({grid_l!s}, {grid_t!s}) grid +({grid_w!s}, {grid_h!s});
    % Mat
    \draw[fill=black,opacity=0.5] ({mat_l!s},{mat_t!s}) rectangle +({mat_w!s},{mat_h!s});
    % Window
    \draw[fill=white] (0,0) rectangle +(9,-6);
\end{{tikzpicture}}
""".format(**v))
Exemplo n.º 6
0
  # Compute roots and weights for different values of x
  # Note that there may be some "duplication" if the end of one interval
  # does not exactly match the beginning of the next (which may occur with frange)
  rtswts = {}
  for x in xlist:
    if (x in rtswts):
      continue
    roots, weights = rysroots(n, x)
    rtswts[x] = [roots, weights]
    print('x = {0}'.format(figs(x)))
    for i in range(len(roots)):
      print('{0}: {1} {2}'.format(i+1, figs(mp.sqrt(roots[i])), figs(weights[i], exp=True)))
  xlist = xlists[n-1]

  # Now proceed with the fitting
  l_min = int(mp.ceil((fit_degree+1)*fine_step/dx[n-1]))+1
  nx = len(xlist)
  num = []
  coeff = []
  center = []
  ini = 0
  print()
  print('{0} points'.format(nx))
  l_prev = 0
  while (ini < nx-1):
    # TODO: bad luck if there are not enough points left to fit
    if (ini+l_min > nx):
      raise
    # l is the number of data points to fit (minimum is l_min)
    # ini is the initial point to include in the fit, so the range is ini to ini+l-1 (ini:ini+l for python)
    l_max = nx-ini
Exemplo n.º 7
0
def segregate(n):
    n = int(mp.floor(mp.sqrt(n)) + 1)
    n_d = int(mp.ceil(mp.fdiv(n, pro_cnt)))
    n_list = [[x, x + n_d] for x in range(1, n, n_d)]
    n_list[0][0], n_list[-1][1] = 2, n
    return n_list, len(n_list)