Exemplo n.º 1
0
    def lnlhood(self, param):
        """ This is the function that evaluates the likelihood at each point in NDIM space

        Parameters
        ----------
        param :

        Returns
        -------

        """
        likeit = 0

        #loop over all the ions
        for ii in range(self.nions):
            thislike = 0
            #parity check : make sure data and models are aligned
            if (self.data[ii][0] != self.mod_colm_tag[ii]):
                raise ValueError(
                    'Mismtach between observables and models. This is a big mistake!!!'
                )

            #now call the interpolator for models given current ion
            mod_columns = self.interpol[ii](param)

            #check if upper limit
            if (self.data[ii][3] == -1):
                #integrate the upper limit of a Gaussian - cumulative distribution
                arg = ((self.data[ii][1] - mod_columns) /
                       (np.sqrt(2) * self.data[ii][2]))[0]
                thislike = mmath.log(0.5 + 0.5 * mmath.erf(arg))
                likeit = likeit + float(thislike)
                #print self.data[ii][0], float(thislike), self.data[ii][1], mod_columns

            #check if lower limit
            elif (self.data[ii][3] == -2):

                #integrate the lower limit of a Gaussian - Q function
                arg = ((self.data[ii][1] - mod_columns) /
                       (np.sqrt(2) * self.data[ii][2]))[0]
                thislike = mmath.log(0.5 - 0.5 * mmath.erf(arg))
                likeit = likeit + float(thislike)
                #print self.data[ii][0], float(thislike), self.data[ii][1], mod_columns

            #if value, just eval Gaussian
            else:

                #add the likelihood for this ion
                thislike = -1 * np.log(
                    np.sqrt(2 * np.pi) *
                    self.data[ii][2]) - (self.data[ii][1] - mod_columns)**2 / (
                        2 * self.data[ii][2]**2)
                #mpmath equivalent
                #thislike=-1*mmath.log(mmath.npdf(mod_columns[0],mu=self.data[ii][1],sigma=self.data[ii][2]))

                likeit = likeit + float(thislike)
        return likeit
Exemplo n.º 2
0
def fl0xz(x0, seta2, seff2):

    xm = x0 / np.sqrt(2. * seta2)
    tau = lamda1 * seff2 / np.sqrt(2. * seta2)
    ki = theta * (1. + lamda2 * seff2) / np.sqrt(2. * seta2)

    intgr1 = erf(tau + ki - xm)
    intgr2 = erf(tau + ki + xm)

    return .5 * (intgr1 + intgr2)
Exemplo n.º 3
0
def fl0xz(x0, seta2, seff2):

    xm = x0/np.sqrt(2.*seta2)
    tau = lamda1*seff2/np.sqrt(2.*seta2)
    ki = theta*(1.+lamda2*seff2)/np.sqrt(2.*seta2) 

    intgr1 = erf(tau+ki-xm)
    intgr2 = erf(tau+ki+xm)

    return .5*(intgr1+intgr2)
Exemplo n.º 4
0
def test_bounds_for_Q1():
    """
    These bounds are from:

        Jiangping Wang and Dapeng Wu,
        "Tight bounds for the first order Marcum Q-function"
        Wireless Communications and Mobile Computing,
        Volume 12, Issue 4, March 2012, Pages 293-301.

    """
    with mpmath.workdps(50):
        sqrt2 = mpmath.sqrt(2)
        sqrthalfpi = mpmath.sqrt(mpmath.pi / 2)
        for b in [mpmath.mp.mpf(1), mpmath.mp.mpf(10)]:
            for a in [b / 16, 0.5 * b, 0.875 * b, b]:
                q1 = marcumq(1, a, b)

                sinhab = mpmath.sinh(a * b)
                i0ab = mpmath.besseli(0, a * b)

                # lower bound when 0 <= a <= b
                lb = (mpmath.sqrt(mpmath.pi / 8) * b * i0ab / sinhab *
                      (mpmath.erfc((b - a) / sqrt2) - mpmath.erfc(
                          (b + a) / sqrt2)))
                assert lb < q1

                # upper bound when 0 <= a <= b
                ub = ((i0ab + 3) / (mpmath.exp(a * b) + 3) * (
                    mpmath.exp(-(b - a)**2 / 2) + a * sqrthalfpi * mpmath.erfc(
                        (b - a) / sqrt2) + 3 * mpmath.exp(-(a**2 + b**2) / 2)))
                assert q1 < ub, ("marcumq(1, a, b) < ub for a = %s,  b = %s" %
                                 (a, b))

        for a in [mpmath.mp.mpf(1), mpmath.mp.mpf(10)]:
            for b in [b / 16, 0.5 * b, 0.875 * b, b]:
                q1 = marcumq(1, a, b)

                sinhab = mpmath.sinh(a * b)
                i0ab = mpmath.besseli(0, a * b)

                # lower bound when 0 <= b <= a
                lb = (1 - sqrthalfpi * b * i0ab / sinhab *
                      (mpmath.erf(a / sqrt2) - mpmath.erf(
                          (a - b) / sqrt2) / 2 - mpmath.erf(
                              (a + b) / sqrt2) / 2))
                assert lb < q1

                # upper bound when 0 <= b <= a
                ub = (
                    1 - i0ab / (mpmath.exp(a * b) + 3) *
                    (4 * mpmath.exp(-a**2 / 2) - mpmath.exp(-(b - a)**2 / 2) -
                     3 * mpmath.exp(-(a**2 + b**2) / 2) + a * sqrthalfpi *
                     (mpmath.erfc(-a / sqrt2) - mpmath.erfc((b - a) / sqrt2))))
                assert q1 < ub, ("marcumq(1, a, b) < ub for a = %s,  b = %s" %
                                 (a, b))
Exemplo n.º 5
0
def fq(x0, seta2, seff2):

    coeff = 1./np.sqrt(np.pi)
    xm = x0/np.sqrt(2.*seta2)
    tau = lamda1*seff2/np.sqrt(2.*seta2)
    psi = lamda2*seff2*x0/np.sqrt(2.*seta2)
    
    intgr1 = coeff*(-tau+2*psi+xm)*exp(-(tau+xm)**2) +.5*(1.+2.*(tau-psi)**2)*erfc(tau+xm)
    intgr2 = coeff*(-tau-2*psi-xm)*exp(-(tau-xm)**2) +.5*(1.+2.*(tau+psi)**2)*erfc(tau-xm)
    intgr3 = .5*x0**2*(erf(tau+xm)+erf(tau-xm))

    return (seta2/(1.+lamda2*seff2)**2)*(intgr1+intgr2)+intgr3
Exemplo n.º 6
0
def fmt2_erfc(t, m, low=0):
    tt = mpmath.sqrt(t)
    low = mpmath.mpf(low)
    low2 = low * low
    f = mpmath.sqrt(mpmath.pi)/2. / tt * (mpmath.erf(tt) - mpmath.erf(low*tt))
    e = mpmath.exp(-t)
    e1 = mpmath.exp(-t*low2) * low
    b = mpmath.mpf('.5') / t
    out = [f]
    for i in range(m):
        f = b * ((2*i+1) * f - e + e1)
        e1 *= low2
        out.append(f)
    return np.array(out)
Exemplo n.º 7
0
def fq(x0, seta2, seff2):

    coeff = 1. / np.sqrt(np.pi)
    xm = x0 / np.sqrt(2. * seta2)
    tau = lamda1 * seff2 / np.sqrt(2. * seta2)
    psi = lamda2 * seff2 * x0 / np.sqrt(2. * seta2)

    intgr1 = coeff * (-tau + 2 * psi + xm) * exp(-(tau + xm)**2) + .5 * (
        1. + 2. * (tau - psi)**2) * erfc(tau + xm)
    intgr2 = coeff * (-tau - 2 * psi - xm) * exp(-(tau - xm)**2) + .5 * (
        1. + 2. * (tau + psi)**2) * erfc(tau - xm)
    intgr3 = .5 * x0**2 * (erf(tau + xm) + erf(tau - xm))

    return (seta2 / (1. + lamda2 * seff2)**2) * (intgr1 + intgr2) + intgr3
Exemplo n.º 8
0
    def lnlhood(self, param):
        """ This is the function that evaluates the likelihood at each point in NDIM space

        Parameters
        ----------
        param :

        Returns
        -------

        """
        likeit=0

        #loop over all the ions
        for ii in range(self.nions):

            #parity check : make sure data and models are aligned
            if(self.data[ii][0] != self.mod_colm_tag[ii]):
                raise ValueError('Mismtach between observables and models. This is a big mistake!!!')

            #now call the interpolator for models given current ion
            mod_columns=self.interpol[ii](param)

            #check if upper limit
            if(self.data[ii][3] == -1):
                #integrate the upper limit of a Gaussian - cumulative distribution
                arg=((self.data[ii][1]-mod_columns)/(np.sqrt(2)*self.data[ii][2]))[0]
                thislike=mmath.log(0.5+0.5*mmath.erf(arg))
                likeit=likeit+float(thislike)
                #print self.data[ii][0], float(thislike), self.data[ii][1], mod_columns

            #check if lower limit
            elif(self.data[ii][3] == -2):

                #integrate the lower limit of a Gaussian - Q function
                arg=((self.data[ii][1]-mod_columns)/(np.sqrt(2)*self.data[ii][2]))[0]
                thislike=mmath.log(0.5-0.5*mmath.erf(arg))
                likeit=likeit+float(thislike)
                #print self.data[ii][0], float(thislike), self.data[ii][1], mod_columns

            #if value, just eval Gaussian
            else:

                #add the likelihood for this ion
                thislike=-1*np.log(np.sqrt(2*np.pi)*self.data[ii][2])-(self.data[ii][1]-mod_columns)**2/(2*self.data[ii][2]**2)
                likeit=likeit+thislike

        return likeit
Exemplo n.º 9
0
def fmt2(t, m, low=None, factor=mpmath.mpf(1)):
    tt = mpmath.sqrt(t)
    f = mpmath.pi**.5 / 2. / tt * mpmath.erf(tt)
    e = mpmath.exp(-t)
    b = mpmath.mpf('.5') / t
    out = [f]
    for i in range(m):
        f = b * ((2 * i + 1) * f - e)
        out.append(f)
    return np.array(out)
Exemplo n.º 10
0
def fmt2(t, m, low=None):
    half = mpmath.mpf('.5')
    tt = mpmath.sqrt(t)
    f = mpmath.pi**half / 2 / tt * mpmath.erf(tt)
    e = mpmath.exp(-t)
    b = half / t
    out = [f]
    for i in range(m):
        f = b * ((2 * i + 1) * f - e)
        out.append(f)
    return np.array(out)
Exemplo n.º 11
0
def test_erf_complex():
    # need to increase mpmath precision for this test
    old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
    try:
        mpmath.mp.dps = 70
        x1, y1 = np.meshgrid(np.linspace(-10, 1, 11), np.linspace(-10, 1, 11))
        x2, y2 = np.meshgrid(np.logspace(-10, 0.8, 11), np.logspace(-10, 0.8, 11))
        points = np.r_[x1.ravel(), x2.ravel()] + 1j * np.r_[y1.ravel(), y2.ravel()]

        # note that the global accuracy of our complex erf algorithm is limited
        # roughly to 2e-8
        assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points, vectorized=False, rtol=2e-8)
    finally:
        mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
Exemplo n.º 12
0
def test_erf_complex():
    # need to increase mpmath precision for this test
    old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
    try:
        mpmath.mp.dps = 70
        x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
        x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11))
        points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(),y2.ravel()]

        assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
                          vectorized=False, rtol=1e-13)
        assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points,
                          vectorized=False, rtol=1e-13)
    finally:
        mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
Exemplo n.º 13
0
def test_erf_complex():
    # need to increase mpmath precision for this test
    old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
    try:
        mpmath.mp.dps = 70
        x1, y1 = np.meshgrid(np.linspace(-10, 1, 11), np.linspace(-10, 1, 11))
        x2, y2 = np.meshgrid(np.logspace(-10, .8, 11), np.logspace(-10, .8, 11))
        points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(),y2.ravel()]

        # note that the global accuracy of our complex erf algorithm is limited
        # roughly to 2e-8
        assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points,
                          vectorized=False, rtol=2e-8)
    finally:
        mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
Exemplo n.º 14
0
def sf(x, mu=0, sigma=1):
    """
    Survival function of the Lévy distribution.
    """
    if sigma <= 0:
        raise ValueError('sigma must be positive.')

    if x <= mu:
        return mpmath.one

    with mpmath.extradps(5):
        x = mpmath.mpf(x)
        mu = mpmath.mpf(mu)
        sigma = mpmath.mpf(sigma)
        arg = mpmath.sqrt(sigma / (2 * (x - mu)))
        return mpmath.erf(arg)
Exemplo n.º 15
0
def test_erf_complex():
    # need to increase mpmath precision for this test
    old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec
    try:
        mpmath.mp.dps = 70
        x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11))
        x2, y2 = np.meshgrid(np.logspace(-80, .8, 31),
                             np.logspace(-80, .8, 11))
        points = np.r_[x1.ravel(), x2.ravel()] + 1j * np.r_[y1.ravel(),
                                                            y2.ravel()]

        assert_func_equal(sc.erf,
                          lambda x: complex(mpmath.erf(x)),
                          points,
                          vectorized=False,
                          rtol=1e-13)
        assert_func_equal(sc.erfc,
                          lambda x: complex(mpmath.erfc(x)),
                          points,
                          vectorized=False,
                          rtol=1e-13)
    finally:
        mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec
Exemplo n.º 16
0
def pval(x):
    return -mpmath.log10(1 - 0.5 * (1 + mpmath.erf(x / mpmath.sqrt(2))))
Exemplo n.º 17
0
 def eval(self, z):
     return mpmath.erf(z)
Exemplo n.º 18
0
def Z(x): return (1.j * mp.sqrt(mp.pi) * mp.exp(- x**2) * (1 + mp.erf(1.j * x)))



def getGrowthNakata(ky_list, Setup, init = -0.07 -.015j):
Exemplo n.º 19
0
    for m in range(0, n+1):
      xn12 = mp.mpf(1.0)/mp.power(x, m+0.5)
      cgam = mp.gammainc(m+0.5)  # "Complete" gamma?

      # Incomplete gamma via continued fractions and Lentz method
      lgam = LentzIncGamma(m+0.5, x, maxiter)

      # put it together
      F.append(mp.mpf(0.5) * (xn12 * cgam - ex*lgam))

    return F



X = 0.01
N = 1
maxiter = 500

oldF = BoysValue(N, X)
newF = BoysValue_Gamma(N, X, maxiter)

sx = mp.sqrt(X)
fac = mp.sqrt(mp.pi)/2.0
print("ERF: {}".format(mp.nstr(fac/sx * mp.erf(sx), 16)))
print("OLD: {}".format(mp.nstr(oldF[0], 16)))
print("NEW: {}".format(mp.nstr(newF[0], 16)))



Exemplo n.º 20
0
 def test_erf_complex(self):
     assert_mpmath_equal(sc.erf,
                         lambda z: mpmath.erf(z), [ComplexArg()],
                         n=200)
Exemplo n.º 21
0
 def test_erf(self):
     assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [Arg()])
Exemplo n.º 22
0
def Erf(x):
    return(float(mpmath.erf(x)))
Exemplo n.º 23
0
			def ps0_lp (κ, s):
				k = σ * κ
				return (1 - mpmath.exp(k**2/2)/2 * ( mpmath.exp(+κ*x[i]) * mpmath.erfc((b+k)/sqrt2)
				                                   + mpmath.exp(-κ*x[i]) * (1+mpmath.erf((b-k)/sqrt2)) ) ) / s
Exemplo n.º 24
0
 def test_erf(self):
     assert_mpmath_equal(sc.erf,
                         lambda z: mpmath.erf(z),
                         [Arg()])
Exemplo n.º 25
0
def normal_cdf(x, mu=0, sigma=1):
    return (1 + mpmath.erf((x - mu) / mpmath.sqrt(2) / sigma)) / 2
Exemplo n.º 26
0
def pval(x):
    return float(1 - 0.5 * (1 + mpmath.erf(x / mpmath.sqrt(2))))
Exemplo n.º 27
0
 def test_erf_complex(self):
     assert_mpmath_equal(sc.erf,
                         lambda z: mpmath.erf(z),
                         [ComplexArg()], n=200)
Exemplo n.º 28
0
def f46(x):
    # erf
    return mpmath.erf(x)
Exemplo n.º 29
0
 def eval(self, z):
     return mpmath.erf(z)
Exemplo n.º 30
0
        """
        fun = lambda t: f(t + x)
        npoints = len(intrv)

        df = self.__dip__(p, npoints - 1, fun, intrv, eps)

        if not self.r:
            warnings.warn("Derivation failed to reach precision goal.",
                          RuntimeWarning)

        return df


if __name__ == "__main__":
    # function to test
    f = lambda t: 6 * mp.exp(-6 * t) + t + mp.log(0.2 * t + 4) - 2**t - mp.erf(
        t)

    # Real derivatives, for testing
    f_d = []
    f_d.append(lambda t: 1 / (5 * (t / 5 + 4)) - 36 * mp.exp(-6 * t) - 2**t *
               mp.log(2) - (2 * mp.exp(-t**2)) / mp.pi**(1 / 2) + 1)
    f_d.append(lambda t: 216 * mp.exp(-6 * t) - 1 / (25 * (t / 5 + 4)**2) - 2**
               t * mp.log(2)**2 + (4 * t * mp.exp(-t**2)) / mp.pi**(1 / 2))
    f_d.append(lambda t: 2.0 / (125 * (t / 5 + 4)**3) - 1296 * mp.exp(-6 * t) +
               (4 * mp.exp(-t**2)) / mp.pi**(1 / 2) - 2**t * mp.log(2)**3 -
               (8 * t**2 * mp.exp(-t**2)) / mp.pi**(1 / 2))
    f_d.append(lambda t: 7776 * mp.exp(-6 * t) - 6.0 / (625 * (t / 5 + 4)**4) -
               2**t * mp.log(2)**4 - (24 * t * mp.exp(-t**2)) / mp.pi**
               (1 / 2) + (16 * t**3 * mp.exp(-t**2)) / mp.pi**(1 / 2))

    nPoints = 100  # points around 0