def calc_mu(k, x1, x2, x3, zeta, abel): mu = [] for i in range(0, 4, 1): mu.append(complex( 0.25 *pi* ((jtheta(1, abel[i]*pi, qfrom(k=k), 1) / (jtheta(1, abel[i]*pi, qfrom(k=k), 0)) ) + (jtheta(3, abel[i]*pi, qfrom(k=k), 1) / (jtheta(3, abel[i]*pi, qfrom(k=k), 0)) )) \ - x3 - (x2 + complex(0,1) *x1) * zeta[i])) return mu
def z_eta(u, m): """Jacobi eta function (eq 16.31.3, [Abramowitz]_).""" q = qfrom(m=m) DM = ellipk(m) z = mp.pi * u / (2 * DM) eta = jtheta(n=1, z=z, q=q) return eta
def z_eta(u, m): r""" A function evaluate Jacobi eta function (eq 16.31.3, [Abramowitz]_). :param u: Argument u :param m: m is the elliptic parameter (not the modulus k and not the nome q) :rtype: Returns a float, Jacobi eta function evaluated for the argument `u` and parameter `m` """ q = qfrom(m=m) DM = ellipk(m) z = mp.pi * u / (2 * DM) eta = jtheta(n=1, z=z, q=q) return eta
def calc_eta_by_theta(k, z): return 0.25 * complex(0, 1) * pi * ((jtheta(2, 0, qfrom(k=k), 0)) ** 2) \ * ((jtheta(4, 0, qfrom(k=k), 0)) ** 2) \ * (jtheta(3, 0, qfrom(k=k), 0)) \ * (jtheta(3, 2*z*pi, qfrom(k=k), 0)) \ / ( ((jtheta(1, z*pi, qfrom(k=k), 0)) ** 2) * ((jtheta(3, z*pi, qfrom(k=k), 0)) ** 2) )