Exemplo n.º 1
0
def main():
    sections = run_tests()

    doc = Document( *sections )

    opdir = os.path.join( TestLocations.getTestOutputDir(), 'quantity_exprs_valid' )

    doc.to_html(os.path.join(opdir, 'html') )
    doc.to_pdf(os.path.join(opdir, 'all.pdf') )
Exemplo n.º 2
0
def main():
    sections = run_tests()

    doc = Document(*sections)

    opdir = os.path.join(TestLocations.getTestOutputDir(),
                         'quantity_exprs_valid')

    doc.to_html(os.path.join(opdir, 'html'))
    doc.to_pdf(os.path.join(opdir, 'all.pdf'))
Exemplo n.º 3
0

summary = Document(

    Section("Simulation Results",

    Section(  "Overview",
        Section( "Overview Diagram", ),
        Section("Key Traces", ),
        ),
    Section( "Simulation Setup",
        Section( "Population Overview"),
        Section( "Cells"),
        Section( "Synapses"),
        Section( "Gap Junctions"),
        Section( "Stimulations"),
        Section( "Simulation Junctions"),
        ),
    Section( "Mechanism Dynamics",
        Section( "Channel"),
        Section( "Synapses"),
        ),
    Section( "Platform Details"),
    )
)


summary.to_pdf(filename=os.path.expanduser("~/Desktop/f1.pdf"))
summary.to_html(output_dir=os.path.expanduser("~/Desktop/test_html_out/"))

Exemplo n.º 4
0
            List(
                ListItem("arcsin", r"$arcsin(sin(\theta)) = \theta$"),
                ListItem("arccos", r"$arccos(cos(\theta)) = \theta$"),
            ),
            ),
        ),

        Section("Hyperbolic functions",
            r"""In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular,
            functions. The basic hyperbolic functions are the hyperbolic sine "sinh", and the hyperbolic
            cosine "cosh", from which are derived the hyperbolic tangent "tanh", and so on, corresponding to
            the derived trigonometric functions. The inverse hyperbolic functions are the area hyperbolic sine
            "arsinh" (also called "asinh" or sometimes "arcsinh")[2] and so on. Just as the points (cos t, sin
            t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the
            equilateral hyperbola. """,
            List(
                Equation(r""" sinh(x) = \frac{e^x-e^{-x}}{2} =\frac{e^{2x}-1}{2e^x}"""),
                Equation(r""" sinh(x) = \frac{e^x-e^{-x}}{2} =\frac{e^{2x}-1}{2e^x}"""),
                "...",
            ),
        )
    )
)


# Create the output:
summary.to_pdf( filename="./_output/example1/pdf/output.pdf")
summary.to_html( output_dir="./_output/example1/html/")